
Martin Thompson - @mjpt777

Performance Testing Java

Applications

What is Performance?

Throughput / Bandwidth

Latency / Response Time

Throughput vs. Latency

• How does an application cope
under burst conditions?

• Are you able to measure
queuing delay?

• Back-off strategies and other
effects

• Amortise the expensive
operations – Smart Batching

L
a
te

n
c
y

Load

Typical

Possible

Performance Requirements

Performance Requirements

• What throughput and latency does your
system require?

 Do you need to care?

 How will you be competitive?

 Does performance drive business?

• Investments start from a business plan

 Work with the business folk

 Set Transaction Budget limits

• As the business scales does the software
scale in an economic fashion?

 Don’t limit design options

Decompose the Transaction Budget

• How much time is each layer in the
architecture allowed?

• Do all technology choices pay their way?

 Think Aircraft or Spacecraft!

• Profile to ensure budget is enforced

• What happens when throughput
increases?

 Queuing delay introduced?

 Scale out at constant latency?

X µs Total with

Breakdown

How can we test

Performance?

Types of Performance Testing

1. Throughput / Bandwidth Testing

2. Latency / Response Testing

3. Stress Testing

4. Concurrent / Contention Testing

5. Endurance / Soak Testing

6. Capacity Testing

Understand Algorithm Behaviour

• Need to model realistic scenarios

 Read to write ratios

 Distribution across data sets

 No single entity / item tests!

• Model based on production

• Are unbounded queries allowed?

 Deal in manageable chunks

The “Onion”

• Separation of Concerns is key

 Layer your architecture

• Test individual components

• Test assemblies of components with a
focus on interactions

 Beware micro-benchmarking!

• Test core infrastructure

 Useful for catching upgrade issues

• Same patterns at different levels of scale

Know Your Platform/Infrastructure

• Stress test until breaking point

 Do things degrade gracefully?

 Do things crash?

 Order of the algorithms?

• What are the infrastructure capabilities?

 Profile to know relative costs of components

 Operations Per Second

 Bandwidth

 Latency

 Endurance

• What happens when redundant
components take over?

When should we test

Performance?

Performance Test & Profile

“Premature optimization is the root of all evil”
 – Donald Knuth / Tony Hoare

• What does “optimization” mean?

 Specialisation vs. Flexibility?

 Very different from knowing your
system capabilities

 Test / profile early and often

• Integrate performance testing to CI

• Monitor production systems

• Change your development practices...

Development Practices

• Performance “Test First”

• Red, Green, Debug, Profile, Refactor...

 A deeper understanding makes you faster

• Use “like live” pairing stations

• Don’t add features you don’t need

• Poor performance should fail the build!

Performance Testing in Action

The Java Pitfalls

• Runtime Compiler

 JIT & On Stack Replacement (OSR)

 Polymorphism and In-lining

 Dead code elimination

 Race conditions in optimisation

• Garbage Collection

 Which collector - Dev vs. Production

 Skewed results from pauses

 Beware “Card Marking”

• Class Loading

Micro Benchmarking

• Framework should handle warm up

• Representative Data Sets

 Vary set size

• Key Measures

 Ops Per Second (per thread)

 Allocation rates

• Concurrent Testing

 Scaling effects with threads

 Queuing effects

public class MyBenchmark

 extends Benchmark

{

 public void timeMyOp(int reps)

 {

 int i = reps + 1;

 while (-–i != 0)

 {

 MyClass.myOperation();

 }

 }

}

Anatomy Of A Micro Benchmark

public class MapBenchmark

 extends Benchmark

{

 private int size;

 private Map<Long, String> map = new MySpecialMap<Long, String>();

 private long[] keys;

 private String[] values;

 // setup method to init keys and values

 public void timePutOperation(int reps)

 {

 for (int i = 0; i < reps; i++)

 {

 map.put(keys[i], values[i]);

 }

 }

}

Performance Testing Concurrent Components

• Straight Performance Tests

 Ramp number of threads for plotting scaling characteristics

 Measure Ops / Sec throughput – Averages vs. Intervals

 Measure latency for queuing effects

• Validating Performance Tests

 Check invariants and sequences

System Performance Tests

Distributed Load

Generation Agents

System Under Test

<< XML / JSON /

Binary >>

Observer

Acceptance

Test Runners?

Vary numbers

and firepower!!!

System Performance Testing Analysis

• Build a latency histogram for given throughput

 Disruptor Histogram, HdrHistogram

 Investigate the outliers!

• Gather metrics from the system under test

 Design system to be instrumented

 Don’t forget the Operating System

 Plot metrics against latency and throughput

 Capacity planning from this is possible

• Generate micro-bursts

 They show up queuing effects at contention points

 Uncover throughput bottlenecks

Got a Performance Issue?

Performance Profiling

• Java Applications

 JVisualVM, YourKit, Solaris Studio, etc

 What is the GC doing?

 Learn bytecode profiling

• Operating System

 htop, iostat, vmstat, pidstat, netstat, etc.

• Hardware

 Perf Counters – perf, likwid, VTune

• Follow Theory of Constraints for what to tackle!

Performance Testing Lessons

Mechanical Sympathy

• Java Virtual Machines

 Garbage Collection

 Optimization

 Locks

• Operating Systems

 Schedulers

 Virtual Memory

 File Systems & IO

• Hardware

 Hardware capabilities and interactions

 Profile the counters for greater understanding

The Issues With “Time”

• NTP is prone to time correction

 Careful of System.currentTimeMillis()

• Monotonic time not synchronised across
sockets

 System.nanoTime() is monotonic

 RDTSC is not an ordered instruction

• Not all servers and OSes are equal

 Pre Nehalem TSC was not invariant

 Older OSes and VT can be expensive

 Resolution is highly variable by OS/JVM

Beware Being Too Predictable

• CPU Branch Prediction

 Fake Orders

 Taking same path in code

• Cache hits

 Disk loaded into memory

 Memory loaded into CPU cache

 Application level caching

Beware YAGNI

YAGNI

The “Performance Team” Anti-Pattern

• They struggle to keep up with rate of
change

• Performance testing is everyone's
responsibility

• Better to think of a “Performance Team”
as a rotating R&D exercise

• Performance specialists should pair on
key components and spread knowledge

Lame Excuses - “It’s only …”

• It is only start-up code...

 MTTF + MTTR

• It is only test code...

 Feedback cycles!

• It is only UI code...

 Read “High Performance Web Sites” by
Steve Souders

Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

Links:

https://github.com/giltene/HdrHistogram

https://github.com/LMAX-
Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/collecti
ons/Histogram.java

https://code.google.com/p/caliper/

http://grinder.sourceforge.net/

http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-
optimization-overview.html

http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
https://github.com/giltene/HdrHistogram
https://github.com/LMAX-Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/collections/Histogram.java
https://github.com/LMAX-Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/collections/Histogram.java
https://github.com/LMAX-Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/collections/Histogram.java
https://github.com/LMAX-Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/collections/Histogram.java
https://code.google.com/p/caliper/
http://grinder.sourceforge.net/
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html
http://www.javaworld.com/javaworld/jw-08-2012/120821-jvm-performance-optimization-overview.html

