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Simple, small web application

Service oriented RESTful/pubsub/LMAX/P2P 
distributed architecture

Gray area
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Our codebase is 5 years 
old and too hard to change
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We’ve allowed our design 
to evolve into a big 

ball of mud
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We’ll probably create 
services at some point, 

might as well start there
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I’m going to design 
everything up front based on 

unvaldiated assumptions
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Kent Beck

Make it work, 
make it right, 
make it fast
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• Features that have hypotheses

• Hypotheses that can be easily validated

• Code that is always production ready

• Code that is easy to change

Goals
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Creating sustainable small architectures

Software Engineer, Pivotal Labs
Robbie Clutton
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Real stories from 
colleagues and myself
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Names have been 
changed to protect 
the innocent
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Some stories are 
pre-production, others 
are in production
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Crazy Egg

Story



@robb1e

10am deploy CrazyEgg
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5pm review CrazyEgg
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Users clicking headers 
that are not links
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You could feel the 
users frustration
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Simple user testing can pay dividends

Lesson
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• CrazyEgg.com

• UserTesting.com

• SliverbackApp.com

• LeanLaunchLab.com

• Trello.com

Tools
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Funnels, user testing, 
hypotheses and validations

Story
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Product with wizard like 
pages which pre-selected 
default services
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Changes to the basket 
updates price in real-time
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Funnel showed massive 
drop off at a certain step
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In person user testing 
to discover why the 
drop off was occurring
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Create hypothesis to 
stop users leaving at 
this junction
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Implement change: 
allow users to use 
default or create own
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Review funnel 
after deployment
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Learn what is blocking the users

Lesson
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• KissMetrics.com

• StatsD (Etsy)

• Cube (Square)

Tools
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Always be validating

Take away
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You’re gonna need 
a bigger boat

Story
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Dave walks into a new job

START-UP 3.0
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We need more 
RAM for the 
database

Product manager tells you
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Product manager tells you

This report takes 
20 minutes 
to run.
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Hmm, ok
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There are no indexes
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No primary or 
foreign keys
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Needed more RAM so 
the whole database 
could fit in memory
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Dave cleans up a bit, 
report now takes 10 
seconds to run
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Use tools to discover simple mistakes

Lesson
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Passing tests don’t 
imply production quality

Bonus
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• Rails Best Practices

• SQL Explain

• NewRelic.com

Tools
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Instrument, refactor, repeat

Story
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Dave walks into a new job

START-UP 3.0
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Client moving from 
ColdFusion to Ruby



@robb1e

Yes, there are people 
still using ColdFusion
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Ruby is slow and 
we’re going to 
production next 
week.

Product manager tells you
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Product manager tells you

We’ve made a 
terrible mistake...
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You say...

Hold on a minute, 
let’s take a look
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Instrument to find slow 
requests/queries 
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Refactor slowest query 
until more performant 
with green tests
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Rinse and repeat until 
performance has 
improved enough
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Paul Hammond, 2012

Every scaling story:

1. Find the biggest problem
2. Fix the biggest problem
3. Repeat



@robb1e

‘Friday afternoon’ performance 
refactoring can build upon itself

Bonus
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• NewRelic.com

• CodeClimate.com

• Emma, FindBugs

Tools
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Use tools to discover improvements

Take away
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Distributed cache

Story
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Website was growing 
and gaining visitors
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Scaling strategy was to 
add app servers
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Each server had the web 
app and a local cache
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Spinning up a new server 
meant more pressure 
on the database
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Using a distributed cache 
bought the team time to 
make improvements
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Caching can buy significant 
performance improvements

Lesson



@robb1e

• MemcacheD.org

• Varnish-Cache.org

• Squid-Cache.org

Tools
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To cache, or not to cache?

Story
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Sometimes code 
speaks to you

Yo.
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This part is slow, 
let’s cache it. 

Problem solved
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But I’m going to 
invalidate that 

elsewhere
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Collection of widgets 
being rendered with 
new and old design
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Can’t replicate on 
staging or locally
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Clear ALL the cache
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Changing the template had 
not invalidated the entry
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- Phil Karlton

"There are only two hard things in 
Computer Science: cache 
invalidation and naming things."
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Caching can obsure 
poorly written code

Bonus
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Be careful what you cache

Take away
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Non-essential work 
during a request

Story
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User registration 
stopped working
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Mailing list provider
was down
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Exception bubbled up 
and prevented 
registering new user



@robb1e

Put mailing list 
subscription in 
background job
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Shorten the request/response cycle

Lesson
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When dealing with integrations, some 
healthy paranoia is a good thing

Bonus
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• Background workers

• Message Queues

• Threads

Tools
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A tale of two websites

Story
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www.guardian.co.uk

125 requests
1.2MB

HTML: 3.7s
Loaded: 8.4s

http://www.guardian.co.uk
http://www.guardian.co.uk
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m.guardian.co.uk

44 requests
340KB

HTML: 1.68s
Loaded: 3.32s
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That’s not the result of 
better SQL or server 
optimizations
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Result of highly tuned 
client-side Javascript 
and CSS
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No (large) 
Javascript libraries
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Not even jQuery
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Conditional loading of 
secondary content
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- Steve Saunders, 2007

“Optimize front-end performance 
first, that's where 80% or more of 
the end-user response time is 
spent”
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• Firebug

• Chrome Developer Tools

• Compass

• YSlow

• YUI Compressor

Tools
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Perceived performance is more 
important than actual performance

Take away
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Was that really the 
best use of your time?

Story
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During technical due 
diligence for an acquisition 
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The company had built 
their own message queue
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No persistence
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Didn’t use standard 
protocol like AMPQ
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Not explicitly sending a 
terminating character 
would eventually result 
in the queue crashing
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Almost all transactions 
passed through this queue
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Not buying a message 
queue company
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- Joel Spolsky, 2001

"If it's a core business 
function - do it yourself, 
no matter what."



@robb1e

Time is the most expensive out going

Bonus
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Real-time vs near-time

Story
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Trading system which 
updates users’ screen 
every 10 seconds
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Lots of number crunching 
and message queues
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Did some in the 
field research
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Traders only checked 
values every few minutes
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This was not high 
volatile trading

http://www.boldjack.com/wp-content/uploads/2012/01/wall_street4.jpg

http://www.boldjack.com/wp-content/uploads/2012/01/wall_street4.jpg
http://www.boldjack.com/wp-content/uploads/2012/01/wall_street4.jpg
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Removed message 
queues and moved 
to publishing updates 
to web server directly
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Reduced complexity 
of the product
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Ron Jefferies, ~2005

Always implement things when 
you actually need them, never 
when you just foresee that you 
need them
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‘Real-time’ can mean different things 
depending on who you talk too

Bonus
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Buy vs build

Story
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$50 a month is really 
expensive for this 

hosted service
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We can build it ourselves 
and get exactly the 
features we need
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Can you build the 
widget service yourself 
in that time?
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Are you in the 
widget business?
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Francis Hwang, 2012

The biggest expense for a startup 
is your time. Not your laptop, not 
your hosting bill, not your office, 
but the hours in your day.
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Focus on your differentiators

Bonus



@robb1e

Over engineering is a form of waste

Take away
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Horizontal Scalability

Story
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Guardian Content API 
is read only and 
eventually consistent
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Used by m., iPhone app, 
parts of www. and more
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Just a simple API over 
an indexed data store
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Each server has 
it’s own data store



@robb1e

Each data store is a replica 
of an internal master
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Simple, elegant design can prevent 
complex architecture creep

Lesson
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• Solr

• Elastic Search

• MongoDB

Tools
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Emergency mode

Story



@robb1e

Use of feature switches 
at Guardian enable 
‘super happy fun mode’
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Turn features off when 
site under increased load
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Content is king and must 
be readable at all times
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Page pressing enables 
zero downtime and 
last fallback
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Feature flags can offer resilience as 
well as a way to roll out new features

Lesson
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Complex should be lots of simple

Take away
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Allow architecture to evolve

Spend your time wisely

Refactor continuously
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Sandi Metz

“The wrong abstraction is far more 
damaging than no abstraction at 
all. Waiting trumps guessing every 
time” 
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Q/A


