
@robb1e

how to lean on others to get stuff done

Software Engineer, Pivotal Labs
Robbie Clutton

Startup Architecture

@robb1e

how to lean on others to get stuff done

Software Engineer, Pivotal Labs
Robbie Clutton

Startup Architecture

@robb1e

with Rails applications

Software Engineer, Pivotal Labs
Robbie Clutton

Startup Architecture

@robb1e

Simple, small web application

Service oriented RESTful/pubsub/LMAX/P2P
distributed architecture

Gray area

@robb1e

Our codebase is 5 years
old and too hard to change

@robb1e

We’ve allowed our design
to evolve into a big

ball of mud

@robb1e

We’ll probably create
services at some point,

might as well start there

@robb1e

I’m going to design
everything up front based on

unvaldiated assumptions

@robb1e

Kent Beck

Make it work,
make it right,
make it fast

@robb1e

• Features that have hypotheses

• Hypotheses that can be easily validated

• Code that is always production ready

• Code that is easy to change

Goals

@robb1e

Creating sustainable small architectures

Software Engineer, Pivotal Labs
Robbie Clutton

Startup Architecture

@robb1e

Real stories from
colleagues and myself

@robb1e

Names have been
changed to protect
the innocent

@robb1e

Some stories are
pre-production, others
are in production

@robb1e

Crazy Egg

Story

@robb1e

10am deploy CrazyEgg

@robb1e

5pm review CrazyEgg

@robb1e

Users clicking headers
that are not links

@robb1e

You could feel the
users frustration

@robb1e

Simple user testing can pay dividends

Lesson

@robb1e

• CrazyEgg.com

• UserTesting.com

• SliverbackApp.com

• LeanLaunchLab.com

• Trello.com

Tools

@robb1e

Funnels, user testing,
hypotheses and validations

Story

@robb1e

Product with wizard like
pages which pre-selected
default services

@robb1e

Changes to the basket
updates price in real-time

@robb1e

Funnel showed massive
drop off at a certain step

@robb1e

In person user testing
to discover why the
drop off was occurring

@robb1e

Create hypothesis to
stop users leaving at
this junction

@robb1e

Implement change:
allow users to use
default or create own

@robb1e

Review funnel
after deployment

@robb1e

Learn what is blocking the users

Lesson

@robb1e

• KissMetrics.com

• StatsD (Etsy)

• Cube (Square)

Tools

@robb1e

Always be validating

Take away

@robb1e

You’re gonna need
a bigger boat

Story

@robb1e

Dave walks into a new job

START-UP 3.0

@robb1e

We need more
RAM for the
database

Product manager tells you

@robb1e

Product manager tells you

This report takes
20 minutes
to run.

@robb1e

Hmm, ok

@robb1e

There are no indexes

@robb1e

@robb1e

No primary or
foreign keys

@robb1e

Needed more RAM so
the whole database
could fit in memory

@robb1e

Dave cleans up a bit,
report now takes 10
seconds to run

@robb1e

Use tools to discover simple mistakes

Lesson

@robb1e

Passing tests don’t
imply production quality

Bonus

@robb1e

• Rails Best Practices

• SQL Explain

• NewRelic.com

Tools

@robb1e

Instrument, refactor, repeat

Story

@robb1e

Dave walks into a new job

START-UP 3.0

@robb1e

Client moving from
ColdFusion to Ruby

@robb1e

Yes, there are people
still using ColdFusion

@robb1e

Ruby is slow and
we’re going to
production next
week.

Product manager tells you

@robb1e

Product manager tells you

We’ve made a
terrible mistake...

@robb1e

You say...

Hold on a minute,
let’s take a look

@robb1e

Instrument to find slow
requests/queries

@robb1e

Refactor slowest query
until more performant
with green tests

@robb1e

Rinse and repeat until
performance has
improved enough

@robb1e

Paul Hammond, 2012

Every scaling story:

1. Find the biggest problem
2. Fix the biggest problem
3. Repeat

@robb1e

‘Friday afternoon’ performance
refactoring can build upon itself

Bonus

@robb1e

• NewRelic.com

• CodeClimate.com

• Emma, FindBugs

Tools

@robb1e

Use tools to discover improvements

Take away

@robb1e

Distributed cache

Story

@robb1e

Website was growing
and gaining visitors

@robb1e

Scaling strategy was to
add app servers

@robb1e

Each server had the web
app and a local cache

@robb1e

Spinning up a new server
meant more pressure
on the database

@robb1e

Using a distributed cache
bought the team time to
make improvements

@robb1e

Caching can buy significant
performance improvements

Lesson

@robb1e

• MemcacheD.org

• Varnish-Cache.org

• Squid-Cache.org

Tools

@robb1e

To cache, or not to cache?

Story

@robb1e

Sometimes code
speaks to you

Yo.

@robb1e

This part is slow,
let’s cache it.

Problem solved

@robb1e

But I’m going to
invalidate that

elsewhere

@robb1e

Collection of widgets
being rendered with
new and old design

@robb1e

Can’t replicate on
staging or locally

@robb1e

Clear ALL the cache

@robb1e

Changing the template had
not invalidated the entry

@robb1e

- Phil Karlton

"There are only two hard things in
Computer Science: cache
invalidation and naming things."

@robb1e

Caching can obsure
poorly written code

Bonus

@robb1e

Be careful what you cache

Take away

@robb1e

Non-essential work
during a request

Story

@robb1e

User registration
stopped working

@robb1e

Mailing list provider
was down

@robb1e

Exception bubbled up
and prevented
registering new user

@robb1e

Put mailing list
subscription in
background job

@robb1e

Shorten the request/response cycle

Lesson

@robb1e

When dealing with integrations, some
healthy paranoia is a good thing

Bonus

@robb1e

• Background workers

• Message Queues

• Threads

Tools

@robb1e

A tale of two websites

Story

@robb1e

www.guardian.co.uk

125 requests
1.2MB

HTML: 3.7s
Loaded: 8.4s

http://www.guardian.co.uk
http://www.guardian.co.uk

@robb1e

m.guardian.co.uk

44 requests
340KB

HTML: 1.68s
Loaded: 3.32s

@robb1e

That’s not the result of
better SQL or server
optimizations

@robb1e

Result of highly tuned
client-side Javascript
and CSS

@robb1e

No (large)
Javascript libraries

@robb1e

Not even jQuery

@robb1e

Conditional loading of
secondary content

@robb1e

- Steve Saunders, 2007

“Optimize front-end performance
first, that's where 80% or more of
the end-user response time is
spent”

@robb1e

• Firebug

• Chrome Developer Tools

• Compass

• YSlow

• YUI Compressor

Tools

@robb1e

Perceived performance is more
important than actual performance

Take away

@robb1e

Was that really the
best use of your time?

Story

@robb1e

During technical due
diligence for an acquisition

@robb1e

The company had built
their own message queue

@robb1e

No persistence

@robb1e

Didn’t use standard
protocol like AMPQ

@robb1e

Not explicitly sending a
terminating character
would eventually result
in the queue crashing

@robb1e

Almost all transactions
passed through this queue

@robb1e

Not buying a message
queue company

@robb1e

- Joel Spolsky, 2001

"If it's a core business
function - do it yourself,
no matter what."

@robb1e

Time is the most expensive out going

Bonus

@robb1e

Real-time vs near-time

Story

@robb1e

Trading system which
updates users’ screen
every 10 seconds

@robb1e

Lots of number crunching
and message queues

@robb1e

Did some in the
field research

@robb1e

Traders only checked
values every few minutes

@robb1e

This was not high
volatile trading

http://www.boldjack.com/wp-content/uploads/2012/01/wall_street4.jpg

http://www.boldjack.com/wp-content/uploads/2012/01/wall_street4.jpg
http://www.boldjack.com/wp-content/uploads/2012/01/wall_street4.jpg

@robb1e

Removed message
queues and moved
to publishing updates
to web server directly

@robb1e

Reduced complexity
of the product

@robb1e

Ron Jefferies, ~2005

Always implement things when
you actually need them, never
when you just foresee that you
need them

@robb1e

‘Real-time’ can mean different things
depending on who you talk too

Bonus

@robb1e

Buy vs build

Story

@robb1e

$50 a month is really
expensive for this

hosted service

@robb1e

We can build it ourselves
and get exactly the
features we need

@robb1e

Can you build the
widget service yourself
in that time?

@robb1e

Are you in the
widget business?

@robb1e

Francis Hwang, 2012

The biggest expense for a startup
is your time. Not your laptop, not
your hosting bill, not your office,
but the hours in your day.

@robb1e

Focus on your differentiators

Bonus

@robb1e

Over engineering is a form of waste

Take away

@robb1e

Horizontal Scalability

Story

@robb1e

Guardian Content API
is read only and
eventually consistent

@robb1e

Used by m., iPhone app,
parts of www. and more

@robb1e

Just a simple API over
an indexed data store

@robb1e

Each server has
it’s own data store

@robb1e

Each data store is a replica
of an internal master

@robb1e

Simple, elegant design can prevent
complex architecture creep

Lesson

@robb1e

• Solr

• Elastic Search

• MongoDB

Tools

@robb1e

Emergency mode

Story

@robb1e

Use of feature switches
at Guardian enable
‘super happy fun mode’

@robb1e

Turn features off when
site under increased load

@robb1e

Content is king and must
be readable at all times

@robb1e

Page pressing enables
zero downtime and
last fallback

@robb1e

Feature flags can offer resilience as
well as a way to roll out new features

Lesson

@robb1e

Complex should be lots of simple

Take away

@robb1e

Allow architecture to evolve

Spend your time wisely

Refactor continuously

@robb1e

Sandi Metz

“The wrong abstraction is far more
damaging than no abstraction at
all. Waiting trumps guessing every
time”

@robb1e

Q/A

