
Migrating to Microservices

Adrian Cockcroft @adrianco

QCon London – 6th March 2014

3 | Battery Ventures	

What I learned from my time at Netflix

● Speed wins in the marketplace

● Remove friction from product development

● High trust, low process

● Freedom and responsibility culture

● Don’t do your own undifferentiated heavy lifting

● Simple patterns automated by tooling

● Microservices for speed and availability

4 | Battery Ventures	

5 | Battery Ventures	

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is
doing won’t work”

– 2010

 It only works
for ‘Unicorns’
like Netflix”

– 2011

“We’d like to do
that but can’t”

– 2012

“We’re on our way using
Netflix OSS code”

– 2013

7 | Battery Ventures	

Demands on IT Increased 1000x

Compete or lose in the market!

8 | Battery Ventures	

Colonel Boyd USAF, on Combat

“Get inside your
adversaries' OODA
loop to disorient them”

Observe

Orient

Decide

Act

10 | Battery Ventures	

How fast can you act?

15 | Battery Ventures	

Process Hand-Off Steps for Product Development on IaaS

Product Manager

Development Team

QA Integration Team

Operations Deploy Team

BI Analytics Team

16 | Battery Ventures	

Process Hand-Off Steps for Feature Development on PaaS

Product Manager

Developer

BI Analytics Team

17 | Battery Ventures	

What Happened?

Rate of
change

increased

Cost and size
and risk of

change
reduced

18 | Battery Ventures	

Observe

Orient

Decide

Act

Land grab
opportunity

Competitive
Move

Customer
Pain Point

Analysis

JFDI

Plan
Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery on

Cloud

19 | Battery Ventures	

OK, how do I get there?

20 | Battery Ventures	

"This is the IT swamp draining manual for anyone who is neck deep in alligators.”

Adrian Cockcroft, Cloud Architect at Netflix

22 | Battery Ventures	

Continuous Deployment for Speed

● There is no time for handoffs between teams

● IT is a cloud API providing DevOps automation

● “Run what you wrote” – root access and Pagerduty

● High trust culture for fast local action

● Freedom and responsibility for developers

● Lean Enterprise – coming May 2014

23 | Battery Ventures	

Open Source Ecosystems

● The most advanced, scalable and stable code is OSS

● No procurement cycle, fix and extend it yourself

● Github is your company’s online resume

● Extensible platforms create ecosystems

● Give up control to get ubiquity – Apache license

● Don’t miss Simon Wardley’s Cloud Expo and QCon talks!

Innovate, Leverage and Commoditize

25 | Battery Ventures	

Cloud Native for High Availability

● Business logic isolation in stateless micro-services

● Immutable code with instant rollback

● Auto-scaled capacity and deployment updates

● Distributed across availability zones and regions

● De-normalized single function NoSQL data stores

● NetflixOSS at netflix.github.com and techblog.netflix.com

● Details from Netflix team at Qcon London March 4-8 2014

Cloud Native Benchmarking

Write intensive test of cross region replication capacity
16 x hi1.4xlarge SSD nodes per zone = 96 total

192 TB of SSD in six locations up and running Cassandra in 20 minutes

Cassandra Replicas

Zone A

Cassandra Replicas

Zone B

Cassandra Replicas

Zone C

US-West-2 Region - Oregon

Cassandra Replicas

Zone A

Cassandra Replicas

Zone B

Cassandra Replicas

Zone C

US-East-1 Region - Virginia

Test
Load

Test
Load

Validation
Load

Inter-Zone Traffic 18TB Backup
Restored from S3
using Priam

1 Million writes
CL.ONE (wait for one
replica to ack)

1 Million reads
After 500ms
CL.ONE with no
Data loss

Inter-Region Traffic
Sustained 9Gbits/s, 83ms

18TB takes about 5hrs
18TB

backups
from S3

27 | Battery Ventures	

Team B

Team A

Team C

Team D

NetflixOSS Style Microservices Deployment

API Proxy
Zuul

Karyon1

Staash1

Cassandra

Karyon2

Karyon3

Karyon4

Karyon5

Staash2

MySQL

Karyon6

EVcache

S3

Eureka
Edda

Platform Services
for service registry

and black box
recorder

External API
defined by proxy
which routes to

various backends

28 | Battery Ventures	

Separate Concerns Using Micro-services

● Inverse Conway’s Law – teams own service groups

● One “verb” per single function micro-service

● Size doesn’t matter

● One developer independently produces a micro-service

● Each micro-service is it’s own build, avoids trunk conflicts

● Stateless business logic

● Stateful cached data access layer

29 | Battery Ventures	

Micro-service Interaction Swimlane Diagram
Two Karyon based services keeping state in an EVcache

31 | Battery Ventures	

Microservices Development Architecture

● Versioning
Leave multiple old microservice versions running
Fast introduction vs. slow retirement asymmetry

● Client libraries
Even if you start with a protocol, a client side driver is the end-state
Best strategy is to own your own client libraries from the start

● Multithreading and Non-blocking Calls
Reactive model RxJava using Observable to hide threading
Try migration from Tomcat to Netty to get non-blocking I/O speedup

● Enterprise Service Bus / Messaging
Message buses are CP with big problems getting to AP
Use for send and forget over high latency links

32 | Battery Ventures	

Microservice APIs

● API Patterns
RPC, REST, Self-describing overhead, public vs. in-house
XPATH, jsonpath adds some flexibility but not as useful in-house

● Scripted API Endpoints - Dynamic Client RPC Pattern
See Daniel Jacobson’s talks at slideshare.net/netflix
March 3rd 2014 techblog.netflix.com post by Sangeeta Narayanan

● Service discovery
Build time Ivy, Gradle and Artifactory
Run time Zookeeper for CP, Eureka for AP

● Understanding existing code boundaries
Structure 101 – buy a bigger printer and wallpaper a room

33 | Battery Ventures	

Microservice Datastores

● Book: Refactoring Databases
SchemaSpy to examine schema structure
Denormalization into one datasource per table or materialized view

● CAP – Consistent or Available when Partitioned
Look at Jepsen models for common systems aphyr.com/tags/jepsen
AP as default for distributed system unless downtime is explicitly OK

● Circuit Breakers – See Fluxcapacitor.com for code examples
NetflixOSS Hystrix, Turbine, Latency Monkey, Ribbon/Karyon
Also look at Finagle/Zipkin from Twitter and Metrics, Graphite
Speed of development vs. scale driving resilience

● Microservice lifecycle
Mature slow changing, new fast changing
Number increase over time, services increase in size then split

34 | Battery Ventures	

Micro-services Bring-Up Strategy
Simplest and Soonest

35 | Battery Ventures	

Strategies for impatient product managers

● Carrot
“This new feature you want will be ready faster as a
microservice”

● Stick
“This new feature you want will only be implemented in
the new microservice based system”

● Shiny Object
“Why don’t you concentrate on some other part of the
system while we get the transition done?”

36 | Battery Ventures	

Shadow Traffic Backend Redirection

● First attempt to send traffic to cloud based microservice
Real traffic stream to validate cloud back end
Uncovered lots of process and tools issues
Uncovered Service latency issues

● Modified Monolithic Datacenter Code Path
Returns Genre/movie list for a customer
Asynchronously duplicates request to cloud
Start with send-and-forget mode, ignore response

● Dynamic Consistent Traffic Percentage
If (customerid % 100 < threshold) shadow_call()

37 | Battery Ventures	

Shadow Redirect Pattern

Cloud Data Source
micro-services

Shadow Cloud API
front end micro-

service

Modified Monolithic
Datacenter
Instances

Monolith

Cloud API
micro-
service

Video list by
user

Metadata by
video

One
request
per visit

38 | Battery Ventures	

Metadata Shim Micro-service

● Metadata server isolates new platform from old codebase
Isolate/unblock cloud team from metadata team schedule
Monolithic code only supports obsolete movie object

● VMS subsets the metadata
Only load data used by cloud micro-services
Fast bulk loads for VMS clients speed startup times

● VMS pre-processes the metadata
Explore next generation metadata cache architecture
Distribute metadata to micro-services using S3 or memcached

39 | Battery Ventures	

Microservices Deployment

● Deployment tooling
Vagrant for small services on machine testing
Cloud based Asgard tag/developer routing
Dependencies described with CFengine promises or Puppet
Coordinated deployments with Fabric or CloudFormation

● Production updates and Immutability
Monolithic breaks everything at once
Microservice add a new microservice, no impact, route test traffic to it
Version aware routing, eventual retirement

● Systems vs. Goals and Learning from Failure
Conways law, Speed/Agility, A|B test based improvements
Scott Adams “How to fail at almost everything and still win big”

40 | Battery Ventures	

Automatic Canary Red/Black Deployment

● Developer checks in code then get email notifications of progress

●  Jenkins build launches AMI in test account and starts tests

●  If tests pass launch canary signature analysis in production
Start one new instance of the old code per zone
Start one new instance of the new code per zone
Ramp up traffic and analyze metrics on all six

●  If canary signature looks good replace current production
Scale canary build up to full capacity
Send all the traffic to the new code
Wait until after peak traffic time then remove old code instances

● Security team tools notice the new build via Edda query
Automatic penetration test scan

In use at Netflix for tens of large fleet microservices in active development

Netflix Bad Canary Signature

Netflix Happy Canary Signature

Netflix Global Deploy-to-Prod Automation

Cassandra Replicas

Zone A

Cassandra Replicas

Zone B

Cassandra Replicas

Zone C

West Coast Load Balancers

Cassandra Replicas

Zone A

Cassandra Replicas

Zone B

Cassandra Replicas

Zone C

East Coast Load Balancers

Cassandra Replicas

Zone A

Cassandra Replicas

Zone B

Cassandra Replicas

Zone C

Europe Load Balancers

Afternoon in California
Code checked in

Night-time in Europe

Next day on East Coast After peak on West Coast After peak in Europe

If passes test suite, canary then deploy

Canary then deploy Canary then deploy

44 | Battery Ventures	

Monitoring Micro-services

● Appdynamics
Instrument the JVM to capture everything including traffic flows
Insert tag for every http request with a header annotation guid
Visualize the over-all flow or the business transaction flow

● Boundary.com and Lyatiss CloudWeaver
Instrument the packet flows across the network
Capture the zone and region config from cloud APIs and tags
Correlate, aggregate and visualize the traffic flows

●  Instrumented PaaS Communication Mechanisms
CloudFoundry and Apcera route all traffic through NATS
NetflixOSS ribbon client and karyon server http annotation guid
Scales beyond capabilities of centralized vendor based tools

Visualizing the request flow

45 | Battery Ventures	

Scaling Continuous Delivery Models

●  Etsy – 8 devs per train

●  Everyone runs the monolith

● Queue for the next train

●  Coordination chat session

●  Need to learn deploy process

●  Copy code to existing servers

●  Few concurrent versions

●  50 monolithic updates/day

●  Roll-forward only

●  “Done” is released to prod

●  Everyone has their own build

●  Dev runs their own microservice

●  No waiting, no meetings

●  API call to update prod timeline

●  Automated hands-off deploy

●  Immutable code on new servers

●  Unlimited concurrent versions

●  100s of independent updates

●  Roll-back in seconds

●  “Done” is retired from prod

Monolithic – Etsy, Facebook Microservices – Netflix, Gilt

46 | Battery Ventures	

Separation of Concerns

Bounded Contexts

47 | Battery Ventures	

Summary

● Speed wins in the marketplace

● Remove friction from product development

● High trust, low process

● Freedom and responsibility culture

● Don’t do your own undifferentiated heavy lifting

● Simple patterns automated by tooling

● Microservices for speed and availability

49 | Battery Ventures	

Any Questions? Upcoming Presentations by @adrianco

● Battery Ventures http://www.battery.com

● Adrian’s Blog http://perfcap.blogspot.com

● Netflix Tech Blog http://techblog.netflix.com

● Netflix Slideshare http://slideshare.com/netflix

● Migrating to Microservices – Qcon London - March 6th, 2014

● Monitorama Keynote Portland OR - May 7th, 2014

● GOTO Chicago Opening Keynote May 20th, 2014

● DevOps Summit at Cloud Expo New York – June 10th, 2014

● GOTO Copenhagen/Aarhus – Denmark – Oct 25th, 2014

