
Aviran Mordo
Head of Back-End Engineering @ Wix

@aviranm

linkedin.com/in/aviran

aviransplace.com

Wix Architecture at Scale





Wix in Numbers

Over 45,000,000 users
1M new users/month

Static storage is >800TB of data
1.5TB new files/day

3 data centers + 2 clouds (Google, Amazon)
300 servers

700M HTTP requests/day

600 people work at Wix, of which ~ 200 in R&D



Initial Architecture

Built for fast development

Stateful login (Tomcat session), Ehcache, file uploads

No consideration for performance, scalability and testing

Intended for short-term use

Tomcat, Hibernate, custom web framework

Lighttpd
(file serving) MySQL

DB

Wix
(Tomcat)



The Monolithic Giant

One monolithic server that handled everything

Dependency between features

Changes in unrelated areas of the system caused deployment 
of the whole system

Failure in unrelated areas will cause system wide downtime



Breaking the System Apart



Concerns and SLA

Data Validation

Security / Authentication

Data consistency

Lots of data

Edit websites

High availability

High performance

Lots of static files

Very high traffic volume

Viewport optimization

Cacheable data

Serving Media

High availability

High performance

High traffic volume

Long tail

View sites, created 
by Wix editor



Wix Segmentation

1. Editor Segment 3. Public Segment2. Media Segment

Networking



Making SOA Guidelines

Each service has its own database (if one is needed)

Only one service can write to a specific DB

There may be additional read-only services that directly 
accesses the DB (for performance reasons)

Services are stateless

No DB transactions

Cache is not a building block, but an optimization



1. Editor Segment



Editor Server

Immutable JSON pages (~2.5M / day)

Site revisions

Active – standby MySQL cross datacenters

Editor Server

MySQL 
Active 
Sites

MySQL 
Archive





Protect The Data

Protect against DB outage with fast recovery = replication

Protect against data poisoning/corruption = revisions / backup

Make the data available at all times = data distribution to 
multiple locations / providers



Browser
Editor 
Server

Static 
Grid

Notify

Google 
Cloud 

Storage 

MySQL 
Active 
Sites

MySQL 
Archive

Notify

Saving Editor Data

Archive 
(Amazon)

Archive 
(Google)

Save Page(s)

200 OK

Upload 

Save Page

DC replication

Download Page

MySQL 
Archive

MySQL 
Active 
Sites



Browser
Editor 
Server

Static 
Grid

Save Page(s)

Save Page

Upload 

Notify
Download Page

Google 
Cloud 

Storage 

MySQL 
Archive

MySQL 
Active 
Sites

MySQL 
Archive

DC replication

Notify

Self Healing Process

Archive 
(Amazon)

Archive 
(Google)

MySQL 
Active 
Sites

200 OK



No DB Transactions

Save each page (JSON) as an atomic operation

Page ID is a content based hash (immutable/idempotent)

Finalize transaction by sending site header (list of pages)

Can generate orphaned pages, not a problem in practice



2. Media Segment



Prospero – Wix Media Storage

800TB user media files

3M files uploaded daily

500M metadata records

Dynamic media processing
• Picture resize, crop and sharpen “on the fly”
• Watermark
• Audio format conversion



Prospero

Eventual consistent distributed file system

Multi datacenter aware

Automatic fallback cross DC

Run on commodity servers & cloud



x36

T
x36

T
x32

Austin

Prospero – Wix Media Manager

get image.jpg

First 
fallback

Second
fallback

If not in 
CDN

Google 
Cloud

x36

T
x36

T
x32

Tampa

CDN



3. Public Segment



Public Segment Roles

Routing (resolve URLs)

Dispatching (to a renderer)

Rendering (HTML,XML,TXT)

Public 
Server

HTML 
Renderer

HTML 
SEO 

Renderer

Flash 
Renderer

Sitemap 
Renderer

Robots.txt 
Renderer

www.example.com

Flash 
SEO 

Renderer

http://www.mydomain.com/


Public SLA

Response time <100ms at peak traffic



Publish A Site

Publish site header (a map of pages for a site)

Publish routing table

Publish site header / routes

Editor Segment Public Segment



Built For Speed

Minimize out-of-service hops (2 DB, 1 RPC)

Lookup tables are cached in memory, updated every 5 minutes

Denormalized data – optimize for read by primary key (MySQL)

Minimize business logic



How a Page Gets Rendered

Bootstrap HTML template that contains only data

Only JavaScript imports

JSON data (site-header + dynamic data)

No “real” HTML view



Offload rendering work to the browser 



The average Intel 
Core i750 can push 
up to 7 GFLOPS 
without overclocking 



Why JSON?

Easy to parse in JavaScript and Java/Scala

Fairly compact text format

Highly compressible (5:1 even for small payloads)

Easy to fix rendering bugs (just deploy a new client code)



Minimum Number of Public Servers 
Needed to Serve 45M Sites

4



Public SLA
Be Available 99.99999%



Serving a Site – Sunny Day

Archive

CDN Statics
Browser

http://example.wix.com

Store HTML 
to cache

HTTP 
Request

Notify 
site view

LB

Public

Renderer

HTML

Resources / Media

HTTP 
Request



Serving a Site – DC Lost

Archive

CDN Statics
Browser

http://example.wix.com

LB

Public

Renderer

LB

Public

Renderer

Change DNS

HTTP 
Request



Serving a Site – Public Lost

Archive

CDN Statics
Browser

http://example.wix.com

LB

Public

Renderer

Get 
Cached HTML 
Version

HTML
HTTP 
Request



Living in the Browser

Archive

CDN Statics
Browser

http://example.wix.com

LB

Public

Renderer

Editor

Fallback

JSON / 
Media

HTML
HTTP 
Request

Fallback



Summary

Identify your critical path and concerns

Build redundancy in critical path (for availability)

De-normalize data (for performance)

Minimize out-of-process hops (for performance)

Take advantage of client’s CPU power





Aviran Mordo
Head of Back-End Engineering @ Wix

@aviranm

linkedin.com/in/aviran

aviransplace.com

Q&A

http://goo.gl/Oo3lGr




