

Offline First
@caolan

Unlike the always-wired machines of
the past, computers are now truly

personal, and people move through
online and offline seamlessly

…our apps should do the same

“More often than not, the mobile
experience for a Web application or

site is designed and built after the PC
version is complete. Here's three

reasons why Web applications should
be designed for mobile first instead.”

- Luke Wroblewski (2009)

1. Mobile is exploding

1. Mobile is exploding
2. Mobile forces you to focus

1. Mobile is exploding
2. Mobile forces you to focus

3. Mobile extends your capabilities

 > Offline First Meetup #1, Berlin

“When travelling, I take screenshots of
important messages”

“before the release, you turn on flight
mode on and check if the app crashes…”

“If it doesn’t, you consider the app
'offline-ready' ...this is not enough”

Offline is not an error

It's a legitimate use-case that isn't
going away soon

T E C H N O L O G Y

1. Delivering the application
2. Detecting connectivity
3. Storing data
4. Syncing data

1. Delivering the application
2. Detecting connectivity
3. Storing data
4. Syncing data

<html manifest=”example.appcache”>
 ...
</html>

CACHE MANIFEST
2010-06-18:v2

Explicitly cached 'master entries'.
CACHE:
/favicon.ico
index.html
stylesheet.css
images/logo.png
scripts/main.js

Resources that require the user to be online.
NETWORK:
*

static.html will be served if main.py is inaccessible
offline.jpg will be served in place of all images in images/large/
offline.html will be served in place of all other .html files
FALLBACK:
/main.py /static.html
images/large/ images/offline.jpg

1. The Application Cache will only update if the
 contents of the manifest file have changed

1. The Application Cache will only update if the
 contents of the manifest file have changed

2. It always serves from the cache, even when
 online (watch out for manifest renames)

1. The Application Cache will only update if the
 contents of the manifest file have changed

2. It always serves from the cache, even when
 online (watch out for manifest renames)

3. Non-cached files will not load on a cached
 page unless explicitly listed

1. The Application Cache will only update if the
 contents of the manifest file have changed

2. It always serves from the cache, even when
 online (watch out for manifest renames)

3. Non-cached files will not load on a cached
 page unless explicitly listed

4. User sees new content on next visit
 (requires double refresh)

Service Worker

<html>
 <head>
 <script>
 navigator.serviceWorker.register("worker.js");
 </script>
 </head>
 ...
</html>

// worker.js

this.addEventListener("fetch", function (e) {
 if (e.request.url == “/data.json”) {
 e.respondWith(
 new Response({statusCode: 200, body: …})
);
 }
});

this.addEventListener("install", function (e) {
 // Create a cache of resources and fetch them.
 var resources = new Cache(
 “/app.html”,
 “/data.json”
);
 // Wait until all resources are ready.
 e.waitUntil(resources.ready());
 // Set cache so we can use during onfetch
 caches.set("v1", resources);
});

this.addEventListener("fetch", function (e) {
 // No "onfetch" events are dispatched to the
 // ServiceWorker until it successfully installs.
 e.respondWith(caches.match(e.request));
});

HTTP + Cache

Browser

Page

HTTP + Cache

Browser

Page

AppCache

Declarative only, no direct
programmatic access

HTTP + Cache

Browser

Page

Sits between your page
and the browser's network

stack
Service Worker

HTTP + Cache

Browser

Page

It can intercept, modify and
respond to network

requests
Service Worker

HTTP + Cache

Browser

Page

Cache

Programmatic access to a
set of durable caches

Service Worker

(Diagram totally stolen from @phuunet)

1. Delivering the application
2. Detecting connectivity
3. Storing data
4. Syncing data

if (navigator.onLine) {
 alert('online');
}

window.addEventListener("offline", ...);
window.addEventListener("online", ...);

In Chrome and Safari, if the
Browser is not able to connect to a

local area network (LAN)
or a router, it is offline.

In Firefox and Internet Explorer,
switching the browser to offline mode

sends a false value. All other conditions
return true.

var appcache = window.applicationCache;
appcache.addEventListener("error", function (e) {
 // probably offline
});

xhr.status === 0
xhr.readyState === 0
xhr.addEventListener('error', onDown, false);
xhr.addEventListener('timeout', onDown, false);

1. Delivering the application
2. Detecting connectivity
3. Storing data
4. Syncing data

LocalStorage

// The values we want to store offline.
var users = [
 {id: 1, fullName: 'Matt'},
 {id: 2, fullName: 'Bob'}
];

// Let's save it for the next time we load the app.
localStorage.setItem('users', JSON.stringify(users));

// The next time we load the app, we can do:
var users = JSON.parse(localStorage.getItem('users'));

1. It's dead simple

1. It's dead simple
2. It's well supported by browsers

1. It's synchronous (blocks UI)

1. It's synchronous (blocks UI)
2. Only strings, no Blobs

1. It's synchronous (blocks UI)
2. Only strings, no Blobs
3. No clean way to detect reaching
 the storage limit (~5mb)

IndexedDB

var db;
var dbName = "dataspace";

var users = [
 {id: 1, fullName: 'Matt'},
 {id: 2, fullName: 'Bob'}
];

var request = indexedDB.open(dbName, 2);

request.onerror = function (event) {
 // Handle errors.
};
request.onupgradeneeded = function (event) {
 db = event.target.result;
 var objectStore = db.createObjectStore("users", { keyPath: "id" });
 objectStore.createIndex("fullName", "fullName", { unique: false });
 objectStore.transaction.oncomplete = function (event) {
 var userObjectStore = db.transaction("users", "readwrite").objectStore("users");
 }
};

// Once the database is created, let's add our user to it...
var transaction = db.transaction(["users"], "readwrite");

// Do something when all the data is added to the database.
transaction.oncomplete = function (event) {
 console.log("All done!");
};

transaction.onerror = function (event) {
 // Don't forget to handle errors!
};

var objectStore = transaction.objectStore("users");

for (var i in users) {
 var request = objectStore.add(users[i]);
 request.onsuccess = function (event) {
 // Contains our user info.
 console.log(event.target.result);
 };
}

1. Asynchronous

1. Asynchronous
2. Transactions

1. Asynchronous
2. Transactions
3. No need to serialize/deserialize

1. Asynchronous
2. Transactions
3. No need to serialize/deserialize
4. Indexes

1. Asynchronous
2. Transactions
3. No need to serialize/deserialize
4. Indexes
5. Higher storage limits
 (browser usually asks >50mb)

1. More complicated API

1. More complicated API
2. Supported by fewer browsers

Wrappers

// The values we want to store offline.
var users = [
 {id: 1, fullName: 'Matt'},
 {id: 2, fullName: 'Bob'}
];

// save the values
localForage.setItem('users', users, function (result) {
 console.log(result);
});

1. Delivering the application
2. Detecting connectivity
3. Storing data
4. Syncing data

Offline by default

App

hoodie.store

localStorage

Hoodie Sync

App

hoodie.store

CouchDB

Plugins
(Node.js)

localStorage

S
yn

c

R
E

S
T

Hoodie Sync

Database per-user

A.

B.

Shared
data

A.

B.

Shared
data

A.

B.

Shared
data

A.

B.

Sync is hard
(use existing protocols where possible)

You need to think about...

Queuing of tasks & events
(resumable sync)

Identity
(sandboxing & access control)

Conflicts
(this affects your data model!)

D E S I G N

Launching should feel natural

...what, really?

Offline should not be an after-thought

Offline content should be trust-worthy

The spinner is a lie

I shouldn't have to plan ahead

Oh ...and docs should be on the device,
not just a link to your website!

I M P A C T

Mobile is huge, offline first ensures
great mobile experiences

It gives users control

It's about trust

Forces you to consider the relationship
between your users and their data

You don't need to deliver all data all the time,
just the right data at the right moment

It's the final hurdle in performance

Offline-first means zero latency UX.
We live in the age of experiences,

this is the #1 priority - @janl

It protects from service interruptions.
Users may not even notice if your

server is down.

Scalability – perhaps you don't even
need a backend?

“Offline First” is an ongoing
discussion...

How do we create a modern
design language for offline?

What does offline first mean for
business models?

How can we make offline first
development easier?

Let's talk!

Thanks!
@caolan

