P
"o neotechnology

New Opportunities for
ConnectedData

@ianSrobinson
ian@neotechnology.com

Neo4j Graph Database

PURCHASED
date: 19-07-2012

Person
Author

title: The Tailor of
Do PURCHASED

isbn: 034093770X date: 03-02-2011

Person

name: John Le Carre
name: Alan

born: 19-10-1931

PURCHASED
date: 09-09-2011

INFLUENCED_BY

PURCHASED
date: 05-07-2011

Person
Author

title: Our Man in
Havana

Person

name: lan
loyalty: 5652

name: Graham Greene

born: 02-10-1904

died: 03-04-1991 isbn: 0099286084

complexity = f(size, variable structure, connectedness)

: nslinger
x/ N

vaged the Kahler race, but a team of sci

A

's Who Bought This Item Also Bought

5
Who - Series 7 Pan 2 Doctor Who Christmas Doctor Wi
vray) Special 2011 - The Series 6
Smith Matt Smith Matt S
ottt (3) Fododctee (81) Fodoy
Blu-ray Blu-
£1299 £y

- 03
®ecamsssci - GSCABSCDO2006- 2MLTD.

-

S
MerrillLy

Soconn

How Do Graphs Help

* Represent and navigate a variably-structured
domain

* Understand which things are connected, how,
and with what strength, weight or quality

Variable Structure

e Relationships provide structure

* Importantly, they are defined with regard to
node instances, not classes of nodes

e"ooog
. 0
@9, Oo..c‘o
(@) o
;O‘ @O OQ'C.)
O O OOO
®° o O.- o=@
[]
© ooOoOoO'O
— o ’... o O .
OO
@
® o d o0 .Oo.?
Qo J—0 O.'
°— ¢ o @
o)

Connectedness

Relationship Names
e Semantics first-class element in data model

Relationship Properties

* Describe weight, strength or quality of a
relationship PuncHASED

< PURCHASED
date: 03-02-2011

PURCHASED
date; 09-09-2011

PURCHASED
date: 05-07-2011

PPPPPP

name: lan

loyalty: 5652

Making Connections

Triadic Closure — Closing Triangles

FRIEND FRIEND

Triadic Closure — Closing Triangles

FRIEND FRIEND

Triadic Closure — Closing Triangles

FRIEND FRIEND

FRIEND

Recommending New Connections

Immediate Friendships

FRIEND

Means and Motive

FRIEND FRIEND

Recommendation

FRIEND FRIEND

Recommend New Connections

MATCH (user:User{name:'Terry'})
- [: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(Cother)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

Find Terry

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

Find Terry’s Friends’ Friends

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

Find Terry’s Friends’ Friends

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)

RETURN other.name AS name, I

COUNT(other) AS score
FRIEND FRIEND

ORDER BY score DESC

...Who Terry Doesn’t Know

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)

RETURN other.name AS name, I

COUNT(other) AS score
FRIEND FRIEND

ORDER BY score DESC
& &

Count Matches Per Person

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

Return The Results

MATCH (user:User{name:'Terry'})
-[: FRIEND*2] -
(other:User)
WHERE NOT (user)-[:FRIEND]-(other)
RETURN other.name AS name,
COUNT(other) AS score
ORDER BY score DESC

Taking Account of Friendship Strength

MATCH (user:User{name:'Terry'})
-[rels:FRIEND*2]-
(other:User)
WHERE ALLCr IN rels WHERE r.strength > 1)
AND NOT (user)-[:FRIEND]-(Cother)
RETURN other.name AS name, *
COUNT(other) AS score
ORDER BY score DESC FRIEND PRIEND

strength > 1 strength > 1

& ®

Nowhere To Hide

First-Party Fraud

* Fraudsters apply for credit
— No intention of repaying

* Appear normal until they “burst out”
— Clear out accounts

* Fraud ring
— Share bits of identity (NI, address, telephone)
— Coordinated “burst out”

Fraud Ring

Tel: 0208
674 5742

Address:
87 Minster
St
Tel: 07074
633 7654

Query

* Create new applicant

* Connect applicant to identity info
— Reuse existing identify info where possible

Then

» Select applicant’s identity info
* Crawl surrounding graph

— Look for expansive clusters of account holders

Path Calculations

Problem

* Increase in parcel traffic
— Amazon, eBay
— Current infrastructure can’t cope

* Calculate optimal route

— Under 20ms
— Routes vary over time

* Numbers:
— 2000-3000 parcels per second

— 25 national parcel centres, 2 million postcodes, 30
million address

Period 1

CONNECTED_TO

delivery-
base-3

delivery-
base-2

DELIVEEEY_ROUTE
I \
\
\ \

Al .V ‘\‘
~~
S~
~ == k
/.\\ S S o 7 N

: - - i 4 N
~ =< h \ / \
\ N\

’ AY

~
\

|
\ \
\\ \\ \\ \

| \ \ \ \

~
\
-
’
e
7
z
e
7
-
-~
7
<————-
<-----~

Period 2

CONNECTED_TO

delivery- delivery- delivery-
base-1 base-2 base-3
d , , =~ ~o -
7/ 7 I' / N
e / AN
DELIVERY_ROUTE ,’ ,/ ‘\
/ , / \
/ Ve

/ , / !

y ", y

/
/
/ |

\

~

/ /

y

Perio

CONNECTED_TO

delivery- delivery- delivery-
base-1 base-2 - base-3
L7 e~

! =~ I

| // =~ -

h / T~ <

DELIVERY_ROUTE /))/ R
’
/ / 4 S
1 1 4 \\
e ' P s N N
V4 < A
AR
/ \ / AN / T T~
’ \ i \ / Sa ~So ~<
7/ \ / \ / \ ~ S~
/ \ / N ~
/ \ / \ \ N\ ~ N
/ \ / \ / | \ N
1 / / 1 A \
! | / ! / \ \
I / | / ! \ \
] /

] Vi / / \ \
| | / / / / \

The Full Graph

delivery-
base-3

Oy ¥ MRS

/ v\ /

-
~

\

vy

CONNECTED_TO

cost=3 parcel-
start_date = 1350255600000
end_date = 1350860400000 centre-1

CONNECTED_TO
cost=2

start_date = 1350860400000

end_date = 1351465200000

CONNECTED_TO
cost: 6
start_date: 1351465200000
end_date: 1352070000000

delivery-
base-1

y

\
\
\

4

Xy

b

\

Steps 1 and 2

]
V)

\

V¥

»

|

Find Start and End

MATCH (s:Location {name:{startlLocationt}}),
(e:Location {name:{endLocation}})

Calculate Up Leg

MATCH upLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(db1)
WHERE all(r in relationships(upleg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Path From Start to a Delivery Base

MATCH upLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(dbl)
WHERE all(r in relationships(uplLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Filter Relationships by Period

MATCH upLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(dbl)
WHERE all(r in relationships(uplLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Calculate Down Path

WITH e, uplLeg, dbl
MATCH downLeg = (db2)-[:DELIVERY_ROUTE*1..2]->(Ce)
WHERE all(r in relationships(downlLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Find Routes Between Delivery Bases

WITH dbl, db2, uplLeg, downlLeg
MATCH topRoute =
(db1)<-[:CONNECTED_TO]-0O
-[: CONNECTED_TO*1. .3]-(db2)
WHERE all(r in relationships(topRoute)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Paths Between Delivery Bases

WITH dbl, db2, uplLeg, downleg
MATCH topRoute =
(db1)<-[:CONNECTED_TO]-0O
-[: CONNECTED_TO*1. .3]-(db2)
WHERE all(r in relationships(topRoute)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Filtered by Period

WITH dbl, db2, uplLeg, downleg
MATCH topRoute =
(db1)<-[:CONNECTED_TO]-0O
-[: CONNECTED_TO*1..3]-(db2)
WHERE all(r in relationships(topRoute)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})

Calculate Shortest Route Between

Delivery Bases

WITH uplLeg, downlLeg, topRoute,
reduce (
welight=0,
r 1n relationships(topRoute) |
weight+r.cost) AS score
ORDER BY score ASC
LIMIT 1
RETURN (nodes(uplLeg) +
tail(nodes(topRoute)) +
tail(nodes(downLeg))) AS route

Calculate Shortest Path Between

Delivery Bases

WITH uplLeg, downlLeg, topRoute,
reduce (
weight=0,
r in relationships(topRoute) |
weight+r.cost) AS score
ORDER BY score ASC
LIMIT 1
RETURN (nodes(uplLeg) +
tail(nodes(topRoute)) +
tail(nodes(downLeg))) AS route

Full Query

MATCH (s:Location {name:{startLocation}}),
(e:Location {name:{endLocation}})
MATCH uplLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(Cdbl)
WHERE all(r in relationships(uplLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})
WITH e, uplLeg, dbl
MATCH downLeg = (db2)-[:DELIVERY_ROUTE*1..2]->(e)
WHERE all(r in relationships(downLeg)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})
WITH dbl, db2, uplLeg, downLeg
MATCH topRoute = (db1)<-[:CONNECTED_TO]-()-[:CONNECTED_TO*1..3]-(db2)
WHERE all(r 1in relationships(topRoute)
WHERE r.start_date <= {intervalStart}
AND r.end_date >= {intervalEnd})
WITH uplLeg, downLeg, topRoute,
reduce(weight=0, r in relationships(topRoute) | weight+r.cost) AS score
ORDER BY score ASC
LIMIT 1
RETURN (nodes(uplLeg) + tail(nodes(topRoute)) + tail(nodes(downLeg))) AS route

Online Training

http://www.neo4j.org/learn/online_course

Online Training: . - -
Getting Started with e ' - -

-

Learn Neo4j at your own pace and time
with our free online training course. Get
introduced to graph databases, learn the
core functionality of Neo4j, and practice

Cypher with this engaging and interactive ;: 7‘ - : ONLINE
course. -
| lIVANNE

Get started today »

Graph Gists

https://github.com/neo4j-contrib/graphgist/wiki

Al duration tmes are in minutes and delay type defintons can be found here.

Included Airports

Name city Abbreviation
Hartsfield-Jackson Atanta International Arport Atanta ATL
O'Hare Internatonal Arport Cnicago ORD
Los Angeles International Arport Los Angeles Lax
Datas/Fort Wortn International Arport Datas/Fort Worth DFW

Proposed Model

US Flights & Airports
by Nicole White

Here is the one of my games for analysis / Airport \

I managed to squeex out @ win, but 1t maxes for an nteresting game 1o 00k at because both of us made 5o many bunders.

Wes - Alvin, Fairfax Open . I

y & Start Prezi B \
{ Airport N\ — ' Airport B

1. €4 c5 2. Nf3 Nc6 3. 04 cxdd 4. Nxd4 g6 5. 14 Bg7 6. €5 d6 7. BbS Qb6 8. Nc3 e6
9. Be3 dxeS 10. N5 Qc7 11. Nd6+ Ke7 12. BeS 16 13. NxcB+ KI7 14. N6+ K18

15. Nxb7+ KI7 16. Nd6+ Ke7 17. NiS+ KI7 18. Nxg7 Kxg7 19. Qt3 Nge7 20. Bxe7 N4
21. Bxt6+ Kxf6 2. fxeS+ Kg7 23. Qf6+ Kg8 24. 0-0-O Rf8 25. QgS Rf5 26. Qhé NxbS
27. NxbS QxeS 28, RdB+ Kg7 29. Rxh8 Kxh6 30. QdB+ Kg7 31. Nc3 Qe+ 32. Qd2
Qxd2+ 33, Kxd2 Rf2+ 34, Kd3 Rxg2 35. b4 KI6 36. Rf1+ Ke7 37. NbS Rxh2 38. Nxa7
Rh3+ 39. Kod Ra3 40. Ncb+ Kd6 41. Nab g5 42. Rhi KeS 43. Rxh7 Rxa2 44. Kb3 Rat
45. Kb2 Ret 46. Rg7 K4 47. o4 g4 48. c5 Re2+ 49. Kc3 Red+ 50. Kod Ret 51. ¢6 g3
52. Kc5 Rd1 53. c7 5 54. c8=Q Ret+ 5. Nod KI3 56. Qgé+ Kf2 57. Qxgd+ Ke2

58. Qe+ Kd1 59. Qa2e *

graphdatabases.com

Databases

lan Robinson,

O’REILLY* Jim Webber & Emil Eifrem

