

The mean and lean pipeline

From code to production as fast and safe as
possible

QCon London 2014

Who, what, and why?

Joakim Recht

 Senior Code Monkey at Tradeshift – the
platform for all your business interactions

“- Please don't do that”

The perfect build pipeline

Prevents bad code from entering
production systems

Gives fast feedback

Ensures consistency

Quality becomes absolute

Is fully automated

Creates nice screens and buttons to
click

You get to talk about it on conferences

Our build pipeline

Gives feedback

Prevents most bad code from entering
production systems

Ensures some consistency

Increases quality

Is pretty automated

There are screens and buttons to click

You get to talk about it on conferences

Build pipeline stats (mid 2012+)

● Servers in Jenkins CI env: 28-52
● Backend builds: 18649
● Frontend builds: 10822
● PRs on Bob: 652
● Integration test subset runs: 61586
● Github PRs: 4781
● Number of integration test specs: 248
● Number of war files deployed during prod

deploy: 20

The realities of a startup
● Not enough time
● Not enough people
● Not enough money
● Too many (crazy) ideas
● Too many requirements

2010: The beginning

The simple life

Java backend, Drupal frontend, REST API.

All code in Subversion. No branches.

Everything hosted on Amazon EC2.

Hudson CI to run tests. Green build policy.

Tests written in jUnit, BDD style.

Deployment to test server: manual ssh,
download war, restart Jetty.

Deployment to prod: semi-automated using
custom scripts and AMI building.

Getting a feature into prod

Switching from SVN to Git

● Just working off trunk is easy, but
release management is hard

● SVN branches (and merging) sucks
● Switched to Git in mid 2010

– Offline support, team/personal branches,
cherry-picking, history rewriting

– No formal process yet, other than the
introduction of a production branch. Manual
merging all around. Based on social contract.

Selenium FTW. Or not.

● Manual testing is a pain
● There were no testers employed
● Regressions, esp. in UI, happened all the

time
● Tried out Selenium UI tests

– Manual maintenance

– Not part of normal development process

– Tests too fragile

● Selenium did not help.

UI tests, take 2

Geb and Spock for UI tests

● Geb: Groovy framework on top of
Webdriver (Selenium 2)

● Spock: Groovy-based BDD framework
● Writing tests become part of the

development process
● Tests executed on the only physical server

in order to show the runs on a big screen
● UI tests must be green

Introducing pipeline
visualization

● By mid 2011 the number of teams
had grown

● As had the number of components
● Keeping track of build status on all

the branches was getting
increasingly hard

Starting a new office in SF

“For the n'th time since their arrival
they are fixing broken stuff in master
that was not committed by
themselves. For the team that has no
contact with the owner of the merged
code for 7 hours or more, that could
mean half a day of troubleshooting,
missed sprint targets, convulsions and
so on.” - Gert Sylvest, CTO

The Pull Request
● No manual pushes to master
● Anything going into master must be tested as a

complete configuration
● All components must be green, all integration

tests must run
● Ensures proper consistency
● Implemented by Jenkins jobs

– Not Gerrit. Seemed too complicated.

● Physical build machine for Geb abandoned and
replaced with Jenkins swarm on EC2

Developers, developers,
developers

● Approaching 40 developers by 2013
● Keeping consistency and quality getting hard
● Knowledge sharing equally hard
● No written procedures or guides

– Also, nobody wanted to write any or maintain them

Solution: Code reviews using Github PRs
– All code must be reviewed by at least one other dev

– DB migrations to be reviews by select group

More automation

Removing ops as bottleneck
● In 2011 all environments (except local dev)

were changed to use Puppet
● Release procedure a matter of starting a job

on Jenkins (only available to Ops)
● 2013: Any team can deploy any configuration

to any sandbox env by the click of a button
● Thread dumps for running env can be

generated from Jenkins
● Sandbox availability times can be controlled

Recent issues

Regular annoyances
● Anybody can still push to master – Github cannot

prevent this
– Add comment to PR automatically if opened against master

● Build times
– At the extremes: 40 minutes for backend, 45 minutes for integration

tests

– Cut down to 15 minutes each by optimizing tests and scaling out –
see http://blog.tradeshift.com/just-add-servers/

– Backend tests to be shortened more by splitting into other
components

● Randomly failing tests
– Esp. integration tests

– Zero tolerance initiated

Key learnings

● Too many teams working concurrently
on new features

● Too many regressions and bugs
introduced into production

● Too many components to deploy
● Too many offices and timezones
● Pipeline throughput not sufficient
● SLAs being violated due to downtime

Pivotal events

Automation is king

 But also quite expensive

Don't be religious

 But make sure to have an
 extensive test suite

 That cannot be too slow

 And with understandable tests

What we probably should have
done earlier

● Use Git instead of Subversion
● Perform code reviews for all changes

● Using Geb/Spock would have been nice,
but not stable enough at the time

● All of the above have had a significantly
higher impact than anticipated

● Full automation – also for dev envs
● Explicit code styles – just not painful enough

without
● Naming conventions
● Framework versioning or policies
● Agreement on unit vs system vs integration

vs mock vs UI tests
● Consistent use of Findbugs/Checkstyle/similar
● Testers

What we still don't have

Thank you
Questions?

jre@tradeshift.com

@joakimrecht

https://plus.google.com/+JoakimRecht

http://tradeshift.com/blog/

	Slide 1
	Slide 2
	What is UX?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

