Fault tolerance 101
Joe Armstrong

MMMMMMMMMMMMMMMMMM



Fault

e “behaves as per specification”

¢ “does not crash”

Monday, March 3, 2014



Many systems have no
specification

MMMMMMMMMMMMMMMMMM



Programming is the act of
turning an inexact
description of something
(the specification) into an
exact description of the thing

(the program)

MMMMMMMMMMMMMMMMMM



A program i1s the most precise
description of the problem
that we have

MMMMMMMMMMMMMMMMMM



What is fault tolerance?

e The ability to behave in a sensible manner in
the presence of failure. Consumer software,
~websites, ...

e The ability to behave exactly as specified
despite tailures. Azr traffic control, nuclear power
station control.

“In a sensible manner” is

Exact specificationis " her wooly

extremely difficult. When there 15 no spec -
“in a sensible manner”

means - does not crash

Monday, March 3, 2014



e History

e Hardware Fault Tolerance
o Software Fault Tolerance
e Specifications and code

e Erlang FT

e Demo

Monday, March 3, 2014



We cannot prevent failures

MMMMMMMMMMMMMMMMMM



PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE
ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumann

. — ol

1. INTRODUCTION

The paper that follows 1s based on notes taken by Dr. R. 8. Plerce
on five lectures given by the author at the California Institute of
Technology in January 1952. They have been revised by the author but they
reflect, apart from minor changes, the lectures as they were delivered.

The subject-matter, as the title suggests, is the role of error
in logics, or in the physical implementation of logics — in automata-
synthesis. Error is viewed, therefore, not as an extraneous and misdirected
or misdirecting accident, but as an essential pert of the process under con-
sideration — its importance in the synthesis of automata being fully com-
parable to that otthofutornh&ohunomnyoouw. the intended and
correct logical structure. ‘ o

Monday, March 3, 2014 : (4 EEELLA] i 13



Making reliable
distributed systems
in the presence of
software errors

Q: Can we make reliable systems
that behave reasonably from
unreliable components?

e

JOE ARMSTRONG l\'l}{
A: Yes S

Doctoral Thesis
Stockholm, Sweden 2003

Monday, March 3, 2014



The Cornerstones of FT

e Detect Errors
e Correct Errors

e Stop Errors from Propagating

Monday, March 3, 2014



Needs > 1 computer

Error detection must work across
machine boundaries Computer 2

watches computer 1

Computer 1

does the job Computer 3

watches computer 1

Computer ...

Must write distributed programs
watches computer 1

Programs run in parallel Decoupling and separation helps
stop errors from propagating

Monday, March 3, 2014



Things to ponder

e Hardware can fail e Detecting or masking errors?
e Software either complies with e Correcting errors

a spec = works or does not do

what the spec says = fails e Propagation of errors
e What should the software do e Error firewalls

when the system behaves in a

way that is not described in e Self-repairing zones

the spec?

e Static/Dynamic error

e What do we do when we don’t detection

have a spec?

e Can we make reliable systems
that behave reasonably from
unreliable components?

Monday, March 3, 2014



Hardware fault tolerance

o System that mask (hide) errors and use
redundancy to mask errors.

Examples: RAID disks, error correcting bits
in memory hardware etc.

Monday, March 3, 2014



Tandem nonstop II (1981)

Ay

Monday, March 3, 2014



Tandem ...

Tandem Computers, Inc. was the
dominant manufacturer of fault-
tolerant computer systems for ATM
networks,banks, stock exchanges,
telephone switching centers, and
other similar commercial transaction
processing applications requiring
maximum uptime and zero data loss.

To contain the scope of failures and of corrupted
data, these multi-computer systems have no

| central components, not even main
memory. Conventional multi-computer systems all
use shared memories and work directly on shared
data objects. Instead, NonStop processors
cooperate by exchanging messages across a
reliable fabric, and software takes periodic
snapshots for possible rollback of program
memory state.

Besides handling failures well this "shared-nothing"
messaging system design also scales extremely well
to the largest commercial workloads. Each doubling of
the total number of processors would double system
throughput, up to the maximum configuration of 4000
processors. In contrast, the performance of
conventional multiprocessor systems is limited by the
speed of some shared memory, bus, or switch. Adding
more than 4—8 processors that way gives no further
system speedup. NonStop systems have more often
been bought to meet scaling requirements than for
extreme fault tolerance. They compete well against
IBM's largest mainframes, despite being built from
simpler minicomputer technology.

Al quotes from Wikipedia

Monday, March 3, 2014


https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/Automatic_teller_machine
https://en.wikipedia.org/wiki/Automatic_teller_machine
https://en.wikipedia.org/wiki/Bank
https://en.wikipedia.org/wiki/Bank
https://en.wikipedia.org/wiki/Stock_exchange
https://en.wikipedia.org/wiki/Stock_exchange
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing

Monday, March 3, 2014

Tandem TR 85.7

Why Do Computers Stop and What Can Be Done About It?
Jim Gray

June, 1985
Revised November, 1985

ABSTRACT
An analysis of the failure statistics of a commercially available
fault-tolerant system shows that administration and software are the
major contributors to failure. Various approachs to software fault-
tolerance are then discussed -- notably process-pairs, transactions
and reliable storage. It is pointed out that faults in production

software are often soft (transient) and that a transaction mechanism

combined with persistent process-pairs provides fault-tolerant

execution -- the key to software fault-tolerance.



Generalizing this discussion, fault-tolerant hardware can

constructed as follows:

Monday, March 3, 2014

Hierarchically decompose the system into modules.

Design the modules to have MTBF in excess of a year.

Make each module fail-fast -- either it does the right thing or

stops.

Detect module faults promptly by having the module signal
failure or by requiring it to periodically send an I AM ALIVE

message or reset a watchdog timer.




* Configure extra modules which can pick up the load of failed
modules. Takeover time, including the detection of the module
failure, should be seconds. This gives an apparent module MTBF

measured in millennia.

The resulting systems have hardware MTBF measured in decades or

centuries.

This gives fault-tolerant hardware. Unfortunately, it says nothing

about tolerating the major sources of failure: software and

operations. Later we show how these same ideas can be applied to> gain

software fault-tolerance.

Monday, March 3, 2014



What do we do when we
detect an error?

e Mask it (try again)

e Do nothing (crush later - not a totally brilliant.
idea)

e Or..

MMMMMMMMMMMMMMMMMM



LT
i
CRASH

MMMMMMMMMMMMMMMMMM



Programming the Ericsson
Diavox (1976)

If you're in a three-
way call at any time
you can press the #
key then press 1 to
talk to party 1

2 to talk to party 2
or * to enter a
conference call

Monday, March 3, 2014



if (state == 3waycall && key == “#"){

key = get next key();

if (key=="1"){
park(2);
connect([self,1]);

} elseif (key=="2"){
park(1l);
connect([self,2]);

} elseif (key=="*"){
connect([self,1,2]);

} elseif (key="onhook”) {

Defensive
programming

/

/* Uuugh what do I do here */

Monday, March 3, 2014



Oh Dear

* The Spec tells what to do when things happen

e The Spec does not say what to do when the
behavior goes “oft-spec”

 The number of ways we can go “off spec” is

huge

 Most specifications do not include tailure
analysis, and do not say what to do when you
are “oft spec”

Monday, March 3, 2014



Joe: “So what happens if we’re in a 3-way conference,
and the guy processes hash and then puts the hook
down, and doesn’t press 1 2 or star?”

Bernt: “So what you do is stop the conference, send the
phone a ring tone and when they answer go back to the
point where you were expecting them to enter 1 2 or
star.”

Joe: “But that’s not in the spec.”

Bernt: “But everybody knows.”

Joe: “I didn’t know.”

Monday, March 3, 2014



Calls are “files”

o If a process crashes the OS closes all files
opened by the process

e If a call crashes the OS closes all calls opened
by the process

e The OS’s job is to “keep files safe” (ie it

maintains invariants)

Monday, March 3, 2014



Let it crash philosophy

e If a processes crashes the OS detects this

e The OS protects the resources being used by
the process

* Programs should crash when going oft spec

Monday, March 3, 2014



if (state == 3waycall && key

key = get next key();

i1f(key=="1"){
park(2);
connect([self,1]);

} elseif (key=="2"){
park(1l);
connect ([self,2]);

} elseif (key=="*"){
connect ([self,1,2]);

Defensive
} else({ programming
exit (out of specl);

}

Monday, March 3, 2014



Faziled Patten.

matching provides
confcall (“#”) -> \thMML
case get_next_key() of

1" =>
park(2) ;
connect ([self,1]);

"ar -> Non defensive
park(1l); programming -

connect ([self,2]);

mynro >

connect([self,1,2])

end.

there is no error
detection or
correction code

Monday, March 3, 2014



Are hardware
and software
faults are
fundamentally
different?

MMMMMMMMMMMMMMMMMM



Are there any pure functions?

MMMMMMMMMMMMMMMMMM



Class (a) functions: If computing f(X)
fails and f is a pure function computing

f(X) will always fail.

Class (b) functions: If computing f(X)
fails and f is a non-pure function it
might succeed if we call f(X) again.

MMMMMMMMMMMMMMMMMM



Is this a pure function?

function £ (){
int a 10,
int b Al
return a/b

MMMMMMMMMMMMMMMMMM



Cosmic ray bits the memory
cell where b is stored and
changes the 2 into zero

function £ (){
int a = 10,
int b = 2,
return a/b

A heisenbug

Monday, March 3, 2014



Software faults are soft -- the Bohrbug/Heisenbug hypothesis

Before developing the next step in fault-tolerance, process-pairs, we
need to have a software failure model. It is well known that most
hardware faults are soft -- that 1is, most hardware faults are
transient. Memory error correction and checksums plus retransmission
for communication are standard ways of dealing with transient hardware

faults. These techniques are variously estimated to boost hardware

MTBF by a factor of 5 to 100.

I conjecture that there 1is a similar phenomenon in software -- most
production software faults are soft. If the program state 1is

reinitialized and the failed operation retried, the operation will

usually not fail the second time.

Monday, March 3, 2014



Heisenbug - Bug that that seems to disappear or alter its
behavior when one attempts to study it

Bohrbug - A "good, solid bug". Like the deterministic Bohr
atom model, they do not change their behavior and are
relatively easily detected.

Mandelbug - (named after Benoit Mandelbrot's fractal) is a
bug whose causes are so complex it defies repair, or makes its
behavior appear chaotic or even non-deterministic.

Schrédinbug (named after Erwin Schrodinger and his
thought experiment) is a bug that manifests itself in running
software after a programmer notices that the code should
never have worked in the first place.

Hindenbug (named after Hindenburg disaster) is a bug with
catastrophic behavior.

Source: wikipedia

Monday, March 3, 2014



o If a process fails restart it (fzxes many heisenbugs,
especially those due to subtle timing errors)

e If you have tried restarting a process more than
N times in K seconds, then give up. Try and do
something simpler instead.

e Build trees of processes, if low-level nodes fail
and cannot be restarted fail higher up the tree

Monday, March 3, 2014



Supervision trees

SUPETVISOTS

workers

Don't forget the manual
backup :-)

Monday, March 3, 2014



The failure model

is part of the specification
(especially for air-traffic
control software etc.)

The customer should
understand the failure model

MMMMMMMMMMMMMMMMMM



I want fault tolerant storage

That’s impossible

We’ll make three copies of your data,
on three different machines. We’ll
guarantee that if one machine crashes
you’ll never lose any data

what happens if 2 machines crash
at the same time

You can still save data on the third
machine, but it will be unsafe. Our
guarantee will not apply.

But I want more safety

Monday, March 3, 2014



We’ll make five copies of your data, on
five different machines. We’ll
guarantee that if two machines crashes
you’ll never lose any data

what happens if 3 machines crash
at the same time

You can still save data on machine 4
and §, but it will be unsafe. Our
guarantee will not apply.

Why is it unsafe? - it’s stored on two machines

Because when machines 1,2,3 come
back to life they might outvote the
changes on machines 4 and §

Monday, March 3, 2014



You have to explain in the
contract the failure
assumptions and what will
happen if these failures occur.
It a tailure occurs that is not
planned it is not covered by
the contract.

act of God”

MMMMMMMMMMMMMMMMMM



Detecting
Errors

MMMMMMMMMMMMMMMMMM



Sequential Languages

A
function a(){
CELY
b(); .
i e Function calls put call frames
ghrow| .
it on the stack
. e ‘Iry instruction put
UG EMORT (B 1
it catchpoints on the stack

y()i
}

e Exceptions unwind the stack
to the last catchpoint

fungtion: e (l) {

st (143 i) {
EHFOmL L a8

}
}

Monday, March 3, 2014



Uncaught Exceptions

e What happens if the exception gets to the top of
the stack and no catchpoint handlers is found?

Java: print a stack trace and exit

C: core dumped

Erlang: Process dies some other process on the same or
some other machine possibly catches the error

Monday, March 3, 2014



Sequential Languages

C When a process crashes the

program.

process

Crash

v

OS notices this and closes any
resources owned by the

Operating System

close

close

Monday, March 3, 2014



When an Erlang process crashes the
Erlang VM notices this and sends
messages to any linked processes

Process4s

Crash

T

process 45 crashed

ﬁ

Erlang

process 45 crashed

Erlang VM

Operating System

Monday, March 3, 2014



i1 i i
Crash f processxocrashed
Erlang VM > Erlang VM
\ y ¢
Unix OS Windows

Monday, March 3, 2014



Demo

1. Start a process on one machine. Send it a
message so it crashes.

2. Start a process on one machine. Send it a
message so it crashes. Detect the crash

3. Start a process on a remote machine. Send it a
message so it crashes. Detect the error on a
remote machine.

Monday, March 3, 2014



-module (progl).
-export ([loop/0]).

loop() ->
receive
N -> | i
io:format ("node=~p 1/-~p PSR et 1 H
[node(), N, 1/N]), Ot Hi

loop () MR
endo HE ||. |
Il Ili;| Illl;l I!
I FHLATTEMCEN
| II
iR
| 'J' ;I.
il l:
i ,]'II'

Monday, March 3, 2014 3 - i



One machine

S erl

Eshell V5.10.1 (abort with 7G)

1> P = spawn(progl, loop, []).

<0.34.0>

2> P ! 12.

node=nonode@nohost 1/12 = 0.08333333333333333

12

3>P ! 0.

o)

4>

=ERROR REPORT==== 29-Nov-2013::13:07:26 ===

Error in process <0.34.0> with exit value:
{badarith, [ {progl,loop,0,[{file, "progl.erl"},{line,7}]1}1}

4> P ! 12.

12

Monday, March 3, 2014



-module (monitor).
-export ([process/1]).

process (Pid) ->
spawn (fun() ->
process flag(trap exit, true),
link(Pid),
monitor (Pid)
end) .

monitor (Pid) ->
receive

Any -> _
io:format ("Monitor ~p received ~p-n",[Pid,Any]),

monitor (Pid) R L R
end. | | ]

Monday, March 3, 2014



One machine + Monitor

Eshell Vv5.10.1
1> P = spawn(progl,
<0.34.0>
2> monitor:process(P).
<0.36.0>
3>P ! 12.
node=nonode@nohost 1/12 =
12
4> P ! 0.
Monitor <0.34.0> received
{'EXIT',<0.34.0>,
{badarith,
[ {progl,loop,0,

loop,

(abort with “G)

[1)-

0.08333333333333333

The process dies and a

& message is sent to the

monzitor process

[{file, "progl.erl"},{line,7}]1}1}}

Monday, March 3, 2014




Two machines and a monitor

S erl -sname two
(two@joe) 1>

S erl -sname one

(one@joe)l> P = spawn( two@joe', progl, loop, []).
<6803.43.0>

(one@joe)2> monitor:process (P).
<0.47.0>

(one@joe)4> P ! 10. i R

10 Or we could kill

node=t:.wo@Joe 1/10 0.1 the machine?
(one@joe)5> P ! O. ‘4-“-________—___L
0 y
Monitor <6803.43.0> received
{'EXIT',<6803.43.0>,
{badarith,
[ {progl,loop,0,
[{file, "progl.erl"},{line,7}]1}1}}

Monday, March 3, 2014



When an Erlang process
crashes the Erlang notices

this and tells and linked

p?" ocesses

Process 200

v

Crash

Reminder

Processzoo

#

process 200 crashed

Erlang VM

Operating System

Monday, March 3, 2014



Monday, March 3, 2014



Detensive
programming
1S a consequence of a
bad concurrency
model

MMMMMMMMMMMMMMMMMM



We’ve detected an error
what do we do next?

MMMMMMMMMMMMMMMMMM



I've detected an error, what should I do?
Try again - it might be a heisenbug

I tried again ten time but it didn’t
help

Ok - give up, and tell you’re boss you
gave up. You did your best, nobody will
blame you.

We have a problem Huston

oo *@1 %" & %0% %" Y0 S # @*** #5@

Monday, March 3, 2014



Do not fail silently
if you cannot do exactly what
you are supposed to do crash.
Somebody else will fix the

problem

Monday, March 3, 2014



Summary

e No shared memory

e Pure message passing

e Remote Error Detection

e Replicated hardware and software on separated machines
e Crash when you get an error

e Do not fail silently

e Some other process fixes the error

Monday, March 3, 2014



Does this
strategy work?

MMMMMMMMMMMMMMMMMM



2002 Alexey Shchepin started building an XMPP server
fully in Erlang

*2005 Process One Founded

*2007 Facebook Chat (build on ejabberd) "the only chat
server with built-in clustering"

2008 Facebook chat in Erlang

*2009 Feb 175M active users (Dropped and rewrite in C++)
*2009 June § Jan Koum gets ejabberd working

*2013 2 Jan - 18 B messages/day

2013 Feb - Chefrr used by facebook/google/Amazon
*2014 19 Feb -19B$ WhatsApp bought by facebook

Monday, March 3, 2014



Opscode guts Chef control freak to scale it to
10,000 servers

Facebook likes — and uses — Chef, just like Amazon and Google

By Timothy Prickett Morgan, 4 Feb 2013 W Follow 5,957 followers

3

RELATED
STORIES

Tech tables

tiirnad! Nmaae it'e

Opscode is in a race with Puppet Labs to become a next-generation management
tool, and its latest Chef product, which does configuration, change, and cloud
management, is used by some of the name-brand hyperscale cloud application
operators out there. As part of the launch of the Chef 11 tool, Facebook is outing
itself as a customer, joining the ranks of Amazon and Google, and tens of thousands
of other IT shops of all shapes and sizes, which already use code.

Monday, March 3, 2014



Monday, March 3, 2014

& - € |D lists.jabber.ru/pipermail/ejabberd/2009-June/005027.html
B Google = https://dl.drop... |1 https://dl.drop... ¥ Joe Armstrong ... @ reddit: the fro

[ejabberd] client access control

Jan Koum jan koum at gmail.com

Mon Jun 8 10:35:49 MSD 2009

* Previous message: [cjabberd] IQ Handler in external component
* Next message: [ejabberd] Degradation over time.
* Messages sorted by: [ date ] [ thread ] [ subject ] [author ]

hi there,

1 1nstalled ejabberd today, got 1t work with adium/ichat and wanted to ask
you all a couple of things:

1. 1 am working on adding jabber support into my iphone app and i1 want to
configure the server in such a way that only my app can register new users
and login into the server. 1is there anything i can do on the server end to
configure this? ssl client authentication or something other client
authentication i can build into the xmpp client?

2. since this 1is an iphone app, the network can drop at any moment. 1is
there a way for a server to quickly discover that client has disconnected so
it can begin to store messages for offline delivery?

thanks.

next part
An HTML attachment was scrubbed...

URL: <http://lists.jabber.ru/pipermail/ejabberd/attachments/20090607/6e0177f7/attachment.htm>

* Previous message: [cjabberd] 1Q Handler in external component
* Next message: [ejabberd] Degradation over time.
* Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]

s e s e e




WhatsApp Inc.

On Dec 31st we had a new record
day: 7B msgs inbound, 11B msgs
outbound = 18 billion total

messages processed in one day!
Happy 2013!!!

4 Reply €3 Retweet ¥ Favorite eesM

2518 633 =208 0O D&

Monday, March 3, 2014



Exclusive: The Rags-To-Riches
Tale Of How Jan Koum Built
WhatsApp Into Facebook's New
$19 Billion Baby

ow + Follow Comme

"

Monday, March 3, 2014



Finally

e Design with small isolated components
e Fault Tolerant = Scalable

e Small components = Understandable

Monday, March 3, 2014



(Questions

MMMMMMMMMMMMMMMMMM



