
CRDTs
Data Types for EC Systems

Problem?

Eventual Consistency
Eventual consistency is a consistency model used in
distributed computing that informally guarantees that, if no
new updates are made to a given data item, eventually all
accesses to that item will return the last updated value. "
"

--Wikipedia"

Trade Off

Scale Up
$$$Big Iron

(still fails)

Scale Out
Commodity Servers

CDNs, App servers

Expertise

Fault
Tolerance

Low
Latency

Low Latency
 Amazon found every 100ms of latency cost

them 1% in sales.

Low Latency

Low Latency
Google found an extra 0.5 seconds in search
page generation time dropped traffic by 20%.

CAP

C A

EC
Causal

RYOW

Session

Monotonic Read/Write

Pick Your Own
http://basho.com/understanding-riaks-

configurable-behaviors-part-1/

"

http://www.bailis.org/blog/when-is-acid-acid-
rarely/

http://basho.com/understanding-riaks-configurable-behaviors-part-1/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

Who Pays?

Developers
But how?

Google F1
“We have a lot of experience with eventual consistency
systems at Google.”"
"

“We find developers spend a significant fraction of their time
building extremely complex and error-prone mechanisms to
cope with eventual consistency”

Riak Overview

Riak Overview
Erlang implementation of Dynamo

{“key”:
“value”}

{“key”:
“value”}

key value

key value

key value

key value

key value

key value

key value

key value

key value

Keys are namespaced

into Buckets

Riak Overview
Consistent Hashing

Riak Overview
Dynamic Membership

Riak Overview
Replication factor

Replica Replica Replica

High Availability
Any non-failing node can respond to any request."

"

--Gilbert & Lynch

Riak Overview
Two Writes: {Writer, Value, Time}

[{a, v1, a1}] [{b, v2, b1}] [{a, v1, a1}]

Riak Overview
Last Writer Wins

Allow Mult

Riak Overview
Last Writer Wins
 [{b, v1, t2}]

[{b, v1, t2}]

[{b, v1, t2}]

Riak Overview
Allow Mult
 [{a, v1, a1}, {b, v2, b1}]

[{a, v1, a1}, {b, v2, b1}]

[{a, v1, a1}, {b, v2, b1}]

User specified

Merge

Semantic
Resolution

DB IS DOWN

Fill in Form P17QR-35"
File for input

DB IS DOWN
Fill in Form P17QR-35"

File for input
OOPS

Dynamo
The Shopping Cart

A B

HAIRDRYER

A B

HAIRDRYER

A B

PENCIL CASE

HAIRDRYER

A B

PENCIL CASEHAIRDRYER

A B

[HAIRDRYER], [PENCIL CASE]

Merge
Set Union of Values

Simples, right?

Deterministic
Merge

Deterministic
Merge

Idempotent

Deterministic
Merge

Idempotent
Associative

Deterministic
Merge

Idempotent
Associative

Commutative

Set Union?
Removes?

Absence
How can you tell if X is missing from A and not
B because A hasn’t seen the addition, or if A
has removed X?

Complexity

Ad Hoc

CRDTs

CRDTs
Convergent Replicated Data Types

CRDTs
Commutative Replicated Data Types

CRDTs
Conflict-free Replicated Data
Types

Theory

Bounded Join Semilattices

Bounded Join Semilattices
Partially ordered set; least upper bound; ACI.

Bounded Join Semilattices
Associativity: (X Y) Z = X (Y Z)

Bounded Join Semilattices
Commutativity: X Y = Y X

Bounded Join Semilattices
Idempotence: X X = X

Bounded Join Semilattices
Objects grow over time; merge computes LUB

Bounded Join Semilattices
Examples

b a c

a, b a, c

a, b, c

Set; merge function: union.

b, c

3 5 7

5 7

7

Increasing natural; merge function: max.

F F T

F T

T

Booleans; merge function: or.

Deterministic
Merge

Idempotent
Associative

Commutative

Riak 2.0

Pick your semantic
Add wins

Remove wins

Keep both

Trade Off
More metadata == bigger objects

Actors?
Version Vectors

Entry Per Actor (Charron-Bost)

Riak 1.4
Counters: non-idempotent; 0 (Actors)

Riak 2.0
Sets: Add, Remove, Membership;

Idempotent

Riak 2.0
Sets: Add wins 0(Actors + Elements)

Riak 2.0
Maps: Recursive; Associative Array;

Nestable

Riak 2.0
Maps: Update wins; 0(Actors + Elements)

Riak 2.0
Maps: LWW-Register, Booleans, Sets and

Maps

Riak 2.0
LWW-Register: last writer wins

Riak 2.0
Boolean: Enabled, Disabled; 0(Actors)

riak_dt
git clone git@github.com:basho/riak_dt.git

Evolution
of a Set

[{a, 1}, {b, 3}, {c, 2}]

Causality
Version Vectors

[{a, 2}, {b, 3}, {c, 2}] [{a, 1}, {b, 3}, {c, 2}]>

Causality
Version Vectors

[{a, 2}, {b, 3}, {c, 2}] [{a, 1}, {b, 4}, {c, 2}]

[{a, 2}, {d, 1}, {c, 2}] [{a, 2}, {b, 4}, {c, 2}]

Causality
Version Vectors

Causality
Version Vectors
‘Dots’ are Events

[{a, 2}, {b, 3}, {c, 2}] {b, 1} {b, 2} {b, 3}

‘Dots’ are Events
Causality

Evolution of a Set

G-SET

Evolution of a Set

G-SET

Evolution of a Set

G-SET
2P-SET

Evolution of a Set

U-SET

Evolution of a Set

U-SET
OR-SET

Evolution of a Set

U-SET
OR-SET

Evolution of a Set

U-SET
OR-SET

OR-SWOT

[{a, 1}]

{a, 1} Shelly

[{a, 1}] [{a, 1}

{a, 1} Shelly {a, 1} Shelly

[{a, 1}] [{a, 1}, {b, 3}]

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

[{a, 1}, {b,3}] [{a, 1}, {b, 3}]

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

[{a, 2}, {b, 3}]

{b, 1}

{b, 3}

[{a, 1}, {b, 3}]

Bob

Pete

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

{a, 2} Anna

[{a, 2}, {b, 3}]

{b, 1}

{b, 3}

[{a, 2}, {b, 3}]

Bob

Pete

{a, 1} Shelly

{b, 1}

{a, 2}

{b, 3}

Bob

Pete

Anna

{a, 1} Shelly

{a, 2} Anna

GARBAGE
Tombstones

Dead Actors

GARBAGE
Tombstones

Dead Actors

No More
Siblings!

Riak 2.0 Dev
Preview

http://docs.basho.com/riak/
2.0.0pre11/downloads/

http://docs.basho.com/riak/2.0.0pre11/downloads/

Bucket Types

Strong
Consistency

Security

Search 2.0

http://bashojobs.resumator.com

http://bashojobs.resumator.com

Questions?

joel@basho.com

@JoelJacobson

mailto:joel@basho.com

