
@olliwegner
@stilkov

From Parts to a Whole:
Modular Development
of a Large-Scale
e-Commerce Site
QCon, London 06/03/2014

Oliver Wegner • Stefan Tilkov

1. Reviewing architectures

Generic Architecture Review Results

Building
features takes
too long

Technical debt is
well-known and
not addressed

Deployment is
way too
complicated
and slow

Replacement would
be way too
expensive

Scalability has
reached its limit

Architectural quality
has degraded

“-ility” problems
abound

http://www.flickr.com/photos/krissymayhew/5463349254, Krissy Mayhew

Any architecture’s quality is directly
proportional to the number of bottlenecks
limiting its evolution, development, and
operations

Conway’s Law

“Organizations which design systems are
constrained to produce systems which are
copies of the communication structures of
these organizations.” – M.E. Conway

Organization → Architecture

Reversal 1

Any particular architecture approach
constraints organizational options – i.e.
makes some organizational models simple
and others hard to implement.

Architecture → Organization

Reversal 2

Choosing a particular architecture can be a
means of optimizing for a desired
organizational structure.

Architecture → Organization

2. Rebuilding Otto.de

e-Commerce Solutions & Technology Product
5 March 2014
Seite 10

P
er

ce
nt

ag
e

of
 tu

rn
ov

er

For the last 15 years the E-Commerce
business has become more important

4.200
Employees > 2.1 Billion €

turnover

> 2 Million items
 on Otto.de

80% turnover
online

But why rebuild Otto.de?

Non-functional:

Functional:

Goals

Scalable

Simple

Personalized

Realtime

Time To
Market

Data-Driven
Test-Driven

Fast

Reliable

Features

OTTO Backend Infrastructure

How green is the green field?

Product
Information

Management

Customer
Management

OTTO E-Commerce Frontend Infrastructure

Articles Orders

Order
Management

Customer

Start of the project LHOTSE

Technical system architecture

Open Source as core technologies

One Prototype to define the technology stack

Project organization with autonomous teams

Scrum as an agile development method

3. A system-of-systems
approach

Macro (technical) architecture

Domain architecture

JRuby C#

Scala Groovy
Java Clojure

RDBMS NoSQL
K/V

RDBMS RDBMS/
DWH

NoSQL
DocDB

RDBMS NoSQL
K/V

RDBMS RDBMS/
DWH

NoSQL
DocDB

Micro architecture

Persistence

Logic

UI

M
odule A

M
odule B

M
odule C

System A

Persistence

Logic

UI

System B

Persistence

Logic

UI

System C

Persistence

Logic

UI

4. The Otto architecture

Buying Process – as you already know it

Search Discover Assess Order Check

Customer Journey

The E-Commerce Business Architecture –
Vertical and Horizontal aspects of the product Otto.de

1 Website = 1 Product = 1 System = 1 Engineering Team ?

Discover Search Assess Order Check

Usability

Webanalytics and Testing

Online and Performance Marketing

Platform Engineering

System architecture is vertical

Search Product Order User After
Sales

UI UI UI UI UI

…

User Auth

UI UI

After
Sales

UI

1 Team à N Systems 1 System à 1 Team

Organizational aspects

RESTful Architecture

Shared Nothing

Vertical Design

Data Governance

Buy when non core

Common Technologies

Macro-Architecture Micro-Architecture

Architecture rules

The 3 Faces of Product Ownership

Technical
Lead

Project
Lead

Business
Lead Product Owner

Project start with distributed teams

Team
Search

Team
Discover

Team
Order

…

Team
Check

But how to deal with frontend integration?

5. Frontend Integration

Development

Deployment

Storage

Backend call

Edge integration

Server-side integration options

RPC
REST RMI

ESI

Homegrown
(Portal server)

Build tools
Chef, Puppet, …

Asset pipeline

Git/SVN submodules Gems
Maven artifacts

DB replication
Feeds

Link

Replaced link

Client-side integration options

Client call

Magical integration concept

Unobtrusive JS
ROCA-style

oEmbed

SPA-style

Otto.de – detail view

Otto.de - Basket

Management of JS and CSS from each team

Order

Personalization

User

System View

Separate teams for horizontal aspects

Team
Discover

Team
Search

Team
Order

Team
Assetserver

Decoupling

Versioned storage

GitHub

Local SCM

Asset Server

6. A/B-Testing

AB-Testing in a distributed environment – What is an AB-
Test

99%

1%

Solution with a centralized framework every team has to
include in their repository

Backoffice

UI for Managing Tests
Persistence

DB

R
E
S
T

Vertical (e.g. Search)

Pull Experiment Data
from Backoffice

User Request User Response

Testing specific
and Vertical

independent logic

DB

Solution with a dedicated Vertical and loose coupling

Backoffice

UI for Managing Tests
Persistence

DB

R
E
S
T

Pull Data
from Back-

office

Testing
Vertical

Testing Logic
Persists all Tests

DB

Vertical
(e.g. Search)

Implement and
Deliver Alternative A

and B

DB

Request Response

R
E
S
T

ESI-Includes
Frontend-

Proxy

7. Conclusion

Results of the project LHOTSE

Finished before schedule: October, 24th à 4 months earlier

2 years in total

Scaled to >100 people

Finished in budget

Finished in quality

Minimum Viable Product

Lessons learned in applying a system-of-systems approach

Independent,
autonomous systems for
maximum decoupling

Strict macro
architecture rules

Teams with
their own
decisions

Be skeptical of
“easy” solutions

Address cross-
functional concerns

Minimize cross-
functional concerns

Minimize need
for coordination

Prefer “pull” to
“push” sharing

@olliwegner
@stilkov

BACKUP

Plattform Engineering delivers the basic infrastructure for
all verticals

Team
Search

Team
Discover

Team
Order

…

Team
Plattform Engineering

Logging

Deployment

Provisioning Infrastructure

Components

Microservices?

Microservices Approach
– Very small

– 100s

– Does one thing only

– Separate client (?)

Vertical Systems Approach
– Medium-sized

– 10s

– Small # of related things

– Includes UI

