

Using
!

to build Front-end

JavaScript Apps that Scale
!

!
QCon London 2014

Phil @leggetter
phil@leggetter.co.uk

Caplin Systems
!

!

!

@BladeRunnerJS

mailto:phil@leggetter.co.uk

Overview

• What is a Large Scale front-end App?

• What are the signs of scaling?

• What are the solutions? (with demos)

What is a large-scale
JavaScript app?

–Addy Osmani, Patterns For Large-Scale JavaScript Application
Architecture

In my view, large-scale JavaScript apps are
non-trivial applications requiring significant

developer effort to maintain, where most heavy
lifting of data manipulation and display falls to

the browser.

Great. More detail
please!

Large Codebase
More functionality === More code

Caplin Trader
• SDK:

• ~1,000 JavaScript files

• ~131,000 LoC

• ~131 lines per file

• ~650 test files

• ~95,000 test LoC

• Getting Started Apps:

• ~425 JavaScript files

• ~50,000 LoC

• ~117 lines per file

• ~200 test files

• ~21,000 test LoC

Complexity

Gmail & Caplin Trader
• Large Single Page Apps (SPAs)

• Complex functionality

• Complex interactions

• User

• Technology

• Leave open all day

Contributors
The Human Factor

Who contributes to an app?
• Front-end devs

• Back-end devs

• Designers

• QA

• Infrastructure and release engineers

• Technical authors

People who are part of...

• Large teams

• Multiple teams

• Teams spread across an organisation

• Teams spread across multiple organisations

So, how do you ensure an
application is maintainable?

1. structure a massive codebase (js, css, html, i18n,
images, config etc.)

2. an architecture for complex functionality and
interaction (UI and other components)

3. make sure that all contributors can work in harmony

4. development must be a productive experience

5. ensure all these compliment each other

Seven signs of
scaling

Dev Setup takes forever

My App won’t load!

• Run full application

• All back-end components running

• Lots of moving parts

Loading designed by Mateo Zlatar from the thenounproject.com

http://thenounproject.com

My App isn’t working!
• Other contributors breaking functionality

• Code accessed and modified from elsewhere

• Dependency Analysis and out of order file concatenation

Finding assets
is hard

What does this code do?

• Inconsistent coding style

• Inconsistent code structure

• Side effects through unexpected
overrides

Long App Reloads

Have the tests finished yet?

• Having to run all the tests

• UI-based tests

• Continuous Integration…taking 8 hours!

• Bonus: Are these tests reliable?

Scaling Solutions

• Streamlined developer workflow

• Consistency

• Focus on building a single feature (in isolation)

• Scalable loosely-coupled application architecture

• Quality at its core (maintainability)

Goals

Developer Workflow

Building a single
feature in isolation

Blades

Blade Demo

• Streamlined developer workflow

• Consistency

• Focus on building a single feature (in isolation)

• Scalable loosely-coupled application architecture

• Quality at its core (maintainability)

Goals

Application
Architecture

Requires an Architecture
that…

• Allows complex interactions

• Allows components to be changed without side effects

• At launch and during runtime

• Is easily extended

• Is easily tested

• Is easily maintained

Blades (again)

MVVM

Services

What is a service?
• Use services to access shared resources

• Persistence Service

• RESTful Service

• Realtime Service

• Services registered and accessed via a ServiceRegistry

• Dynamic Service Locator1

1 http://martinfowler.com/articles/injection.html#ADynamicServiceLocator

http://martinfowler.com/articles/injection.html#ADynamicServiceLocator

Why use services?
• Single shared instance for accessing resources

• Functionality encapsulated behind an interface

• Loose-coupled communication

• Dependencies can be injected for different scenarios:

• App

• Workbench

• Test

Services Demo

• Streamlined developer workflow

• Consistency

• Focus on building a single feature (in isolation)

• Scalable loosely-coupled application architecture

• Quality at its core (maintainability)

Goals

Quality

Manually test in the workbench as part of
iterative development cycle

Simple Wins
• Consistency

• Architecture

• Coding style and structure

• Loose coupling: MVVM, Services & Interfaces

• Facilitates testing

• Can easily swap out implementations

• MVVM: Avoid testing the DOM

Test Demo

Biggest Win
• Testing features in

isolation

• Change view model
and assert against
mocked Service

• Inject mock service,
make calls and assert
View Model

Need Proof?
Our full suite Caplin Trader

testing time went from

>8 Hours

< 30 minutes

• Streamlined developer workflow

• Consistency

• Focus on building a single feature (in isolation)

• Scalable loosely-coupled application architecture

• Quality at its core (maintainability)

Goals

Summary
• BladeRunnerJS toolkit: Streamline developer

workflow

• Blades: Build features in isolation (grouping assets
together)

• Services: loose coupled communication e.g. EventHub

• Quality: Test units (classes), features (ViewModel < - >
Service) & keep DOM testing to a minimum.

BRJS at QCon

• BladeRunnerJS (BRJS) is a new open source

• v0.4 released today (used in demos)

• We’re on 5th floor, Booth 28 (next to Google)

• Come have a chat, even just about the concepts

Phil @leggetter
phil@leggetter.co.uk

Caplin Systems
!

!

!

@BladeRunnerJS
bladerunnerjs.org

mailto:phil@leggetter.co.uk
http://bladerunnerjs.org

