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What We Talk About When
We Talk About Data Science



o & A datascientist is a statistician who
lives in San Francisco.

Data Science is statistics on a Mac.

A data scientist is someone who is
better at statistics than any software
engineer and better at software
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engineering than any statistician.



o & It's about finding insights in data
t’s what specialists do to understand data
t’s applied statistics at large scale
It’s predicting the future from data
It’s about analyzing politics, =«
sports, markets, etc.




Data Scien-




Data Science Is Exploratory Analytics?
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Example: Drug Interactions

ED

Cloudera analysis of FDA drug
data: “Our analysis revealed a few
drug pairs with surprisingly high
correlations with adverse events
that did not show up in a search of
the academic literature:
gabapentin (a seizure medication)
taken in conjunction with
hydrocodone/paracetamol was
correlated with memory
impairment, and haloperidol in
conjunction with lorazepam was
correlated with the patient
entering into a coma.”



~80% Engineers

3ta Scie

~20% Statisticians
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Example: Data Science in the Field

[Large European e-commerce site]

Wants real-time recommendations
for new and returning users

Data streamed from web server via
Flume to HDFS

Multiple data sources
100K+ products, 20M users

Exploratory?
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Search, ML over Patient Data
ﬂ/lapReduce forjindexing, Iearnir®‘
HBase for storage and fast access

Also: Storm for
incremental update

And: relational DB for
most recent derived data

APl facade for input;
QPI for querying learning
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2014: Lab to Factory

Data Scientist
Exploratory Analytics

Predictive Data Products
Operational Analytics
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Data Science Will Be Operational Analytics

Data Scientist Predictive Data Products
Exploratory Analytics Operational Analytics
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| Built A Model On Hadoop. Now What?
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Example: Oryx







Gaps to fill, and Goals

Model Building
Large-scale

Continuous
Apache Hadoop™-based

Few, good algorithms

Model Serving
Real-time query
Real-time update
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Algorithms
Parallelizable
Updateable
Works on diverse input

Interoperable
PMML model format
Simple REST API
Open source



Large-Scale or Real-Time?

Large-Scale Real-Time
Offline VA Online
Batch Streaming

Why Don’t We Have Both?

Al
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Lambda Architecture

Batch, Stream
Processing are different

Tackle separately in
2+ Layers

Batch Layer: offline,
asynchronous

Serving / Speed Layer:
real-time, incremental,
approximate

. A?
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Serving Layer
Client

Serving Layer

Serving Layer

Serving Layer

Computation
Layer




Two Layers

Computation Layer
Java-based server process
Client of Hadoop 2.x

Periodically builds
“generation” from recent
data and past model

Baby-sits MapReduce*
jobs (or, locally in-core)

Publishes models

* Apache Spark later
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Serving Layer

Apache Tomcat™-based
Server process

Consumes models from
HDFS (or local FS)

Serves queries from
model in memory

Updates from new input
Also writes input to HDFS
Replicas for scale
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Collaborative Filtering : ALS

Alternating Least Squares
Latent-factor model
Accepts implicit or
explicit feedback

Real-time update
via fold-in of input

No cold-start

Parallelizable
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Clustering : k-means++

Well-known and
understood

Parallelizable
Clusters updateable
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Classification / Regression : RDF

Random Decision Forests
Ensemble method

Numeric, categorical
features and target

Very parallel
Nodes updateable

Works well on many
problems

“




PMML

<PMML xmlns="http://www.dmg.org/PMML-4 1"

PFEdiCﬁve MOdeling version="4.1">

<Header copyright="www.dmg.org"/>
<DataDictionary numberOfFields="5">

M a r k U p La n g U a ge <DataField name="temperature"

optype="continuous"
XML-based format for _}, datatype="double”/>
</DataDictionary>
predlctlve mOdeIS <TreeModel modelName="golfing"

functionName="classification">
<MiningSchema>

Sta n d a rd ized by Data jMiningField name="temperature" />

</MiningSchema>

M i n i ng G I"O U p <Node score="will play">

<Node score="will play">
<SimplePredicate field="outlook"

(WWW ° dmg o Org) operator="equal"

value="sunny" />

Wide tool support oo

</Node>
</TreeModel>
</PMML>
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Extra: Apache Spark as “Crossover Hit”

Exploratory-friendly
REPL

Scala closures
MLIib

Operational-friendly
Distributed
Hadoop integration
All Java libraries available



Thanks!
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