IMPOSSIBLE
PROGRAMS

@tomstuart / QCon London / 2014-03-05

http://twitter.com/tomstuart
http://twitter.com/tomstuart

PROGRAMS

CAN'T

EVERYTHING

how can a

PRO% RAM
IMPOSSIBLE?

WE DEMAND
UNIVERSAL SYSTEMS

Compare two programming languages,
say Python and Ruby.

We can translate any Python program into Ruby.
We can translate any Ruby program into Python.

We can implement a Python interpreter in Ruby.
We can implement a Ruby interpreter in Python.

We can implement a Python interpreter in JavaScript.
We can implement a JavaScript interpreter in Python.

We can implement a Turing machine simulator in Ruby.
We can implement Ruby as a Turing machine.

SKI calculus
Tag systems

Game of Life

Ruby
Lisp Register machines XSLT
JavaScript
Magic: The
Gatherin
Partial recursive C Python &
functions
Java
Lambda calculus Turing machines

C++ Rule 110 Haskell

Universal systems can run software.

We don't just want machines, we want
general-purpose machines.

PROGRAMS ARE DATA

>> puts 'hello world’
hello world
=> nil

>> program = "puts 'hello world'"
=> "puts 'hello world'"

>> bytes _in _binary = program.bytes.
map { |byte| byte.to s(2).rjust(8, '0') }
=> ["01110000", "01110101", "01110100", "0l1l11l0011l", "00100000",
"00100111", "0110l000", "0l1l100101", "01101100", "0l1l01100",
"01101111", "00100000", "O1110111", "01101111", "01110010",
"01101100", "01100100", "00100111"]

>> number = bytes in binary.join.to 1(2)
=> 9796543849500706521102980495717740021834791

>> number = 9796543849500706521102980495717740021834791
=> 9796543849500706521102980495717740021834791

>> bytes in _binary = number.to s(2).scan(/.+?(?=.{8}*\z)/)

=> ["1l1lle000", "Olll0l101", "O0lll0l00", "0111l0011l", "00100000",
"00100111", "01101000", "01100101", "01101100", "01101100",
"901101111", "00100000", "0O01110111", "01101111", "01110010",
01101100, "01100100", "00100111"]

>> program = bytes in binary.map { |string| string.to i(2).chr }.join
=> "puts 'hello world'"

>> eval program
hello world
=> nil

UNIVERSAL SYSTEMS

+
PROGRAMS ARE DATA

INFINITE LOOPS

Every universal system can simulate every other
universal system, including itself.

More specifically: every universal programming
language can implement its own interpreter.

def evaluate(program, input)
parse program

evaluate program on input while capturing output
return output

end

>> evaluate('print $stdin.read.reverse', 'hello world')
=> "dlrow olleh”

def evaluate(program, input)
parse program
evaluate program on input while capturing output
return output

end

def evaluate on itself(program)
evaluate(program, program)
end

>> evaluate on itself('print $stdin.read.reverse')
=> "esrever.daer.nidts$ tnirp"

def evaluate(program, input)
parse program
evaluate program on input while capturing output
return output

end

def evaluate on itself(program)
evaluate(program, program)
end

program = $stdin.read

if evaluate on_1itself(program) == 'no'
print 'yes'

else
print 'no’

end

does_it_say_no.rb

$ echo 'print $stdin.read.reverse' | ruby does it say no.rb
no

$ echo 'print "no" if $stdin.read.include?("no"™)"' | ruby does it say no.rb
yes

$ ruby does it say no.rb < does it say no.rb
227

does_it_say_no.rb

yes never finish

no other output?

Ruby is universal

so we can write #evaluate in it

so we can construct a special program that loops forever

30 heres one

IMPOJSSIBLE
PROGRAM

Sometimes infinite loops are bad.

We could remove features from a language
until there’'s no way to cause an infinite loop.

No unlimited iteration

remove While loops etc, only allow iteration

over finite data structures

No lambdas

to prevent (AX.X X) (AX.X X)

No recursive method calls

e.g. only allow a method -

o call o

whose names come later

No blocking I/O

in the al

‘her methods
ohabet

The result is called a total
programming language.

[t must be impossible to write
an interpreter for a total
language in itself.

it we could write #evaluate in a total language

\ 4

then we could use it to construct a special program
that loops forever

\ 4

but a total language doesn't let you write programs
that loop forever

4

so it must be impossible to write #evaluate in one

(That's weird, because a total language’s
interpreter always finishes eventually, so
it feels like the kind of program we
should be able to write.)

We could write an interpreter for a total language
in a universal language, or in some other more
powerful total language.

okay but
WHAI

ABOUT
REALITY?

#evaluate is an impossible program for any
total language, which means that total
languages can’t be universal.

Universal systems have impossible programs too.

input = $stdin.read
puts 1input.upcase

This program always finishes.*

* assuming STDIN is finite & nonblocking

input = $stdin.read
while true

do nothing
end

puts 1nput.upcase

This program always loops forever.

Can we write a program that can
decide this in general?

(This question is called the halting problem.)

input = $stdin.read
output = "

n = 1nput.length

until n.zero?
output = output + '*°
n =n -1

end

puts output

require 'prime'’

def primes less than(n)
Prime.each(n - 1).entries
end

def sum of two primes?(n)
primes = primes_ less than(n)

primes.any? { |a| primes.any? { |b|] a + b ==n } }
end
h = 4
while sum of two primes?(n)
n=n+ 2
end

print n

def halts?(program, input)
parse program
analyze program

return true 1if program halts on input, false if not
end

halts?('print $stdin.read’,
true

halts?('while true do end',
false

"hello world')

"hello world')

def halts?(program, input)
parse program
analyze program

return true 1if program halts on input, false if not
end

def halts on 1itself?(program)
halts?(program, program)
end

program = $stdin.read

if halts on_ 1itself?(program)
while true
do nothing
end
end

do_the_opposite.rb

$ ruby do the opposite.rb < do the opposite.rb

do_the_opposite.rb

eventually finish loop forever

Every real program must either loop forever
or not, but whichever happens, #halts?
will be wrong about it.

do_the_opposite.rb forces #halts? to
give the wrong answer.

if we could write #halts?

L4

then we could use it to construct a special program
that forces #halts? to give the wrong answer

¥

but a correct implementation of #halts?
would always give the right answer

¥

so it must be impossible to write #halts?

We never actually want to ask a computer
whether a program will loop forever.

But we often want to ask computers
other questions about programs.

def prints hello world?(program, input)
parse program
analyze program

return true if program prints "hello world", false 1if not
end

prints _hello world?('print $stdin.read.reverse',
true

prints_hello world?('print $stdin.read.upcase’,
false

'dlrow olleh')

'dlrow olleh')

def prints hello world?(program, input)

parse program

analyze program

return true if program prints "hello world", false if not
end

def halts?(program, input)
hello world program = %Q{
program = #{program.inspect}
input = $stdin.read
evaluate(program, input)
print 'hello world'

}

prints _hello world?(hello world program, input)
end

if we could write #prints hello world?

¥

then we could use it to construct a correct
implementation of #halts?

but it's impossible to correctly implement #halts?

v

so it must be impossible to write
#prints _hello world?

Not only can we not ask
“does this program halt?”,
we also can’t ask
“does this program do
what I want it to do?”.

This is Rice’s theorem:

Any interesting property
of program behavior
is undecidable.

WHY
DOES

THIS
HAPPEN?

We can't look into the future and predict
what a program will do.

The only way to find out for sure is to run it.
But when we run a program, we dont know

how long we have to wait for it to finish.
(Some programs never will.)

Any system with enough power to be selt-referential
can't correctly answer every question about itselt.

We need to step outside the self-referential system
and use a different, more powerful system to answer

questions about it.

But there is no more powerful system to upgrade to.

Ask undecidable questions, but give up if an
answer can’t be found in a reasonable time.

Ask several small questions whose answers
provide evidence for the answer to a larger
question.

Ask decidable questions by being conservative.

Approximate a program by converting it into
something simpler, then ask questions about the
approximation.

~ T

= C £
o ol v
A C
iS: o= o
: ° ray
3 D :
S i LL] ¢
mf -

((\] e (o)
o O e
- 1 @) .
: L E
£ O S
Y 4 E
—— @) (7))
~ 0 Hm
o oN o
= @, +
+ ! T@

Tom Stuart

From Simple Machines to Impossible Programs
Understandi

2
—
L
o
O

