
IMPOSSIBLE
PROGRAMS

@tomstuart / QCon London / 2014-03-05

http://twitter.com/tomstuart
http://twitter.com/tomstuart


CAN’T
DO
PROGRAMS

EVERYTHING



how can a

PROGRAM
be

IMPOSSIBLE?



WE DEMAND
UNIVERSAL SYSTEMS



Compare two programming languages, 
say Python and Ruby.



We can translate any Python program into Ruby.
We can translate any Ruby program into Python.

We can implement a Python interpreter in Ruby.
We can implement a Ruby interpreter in Python.

We can implement a Python interpreter in JavaScript.
We can implement a JavaScript interpreter in Python.

We can implement a Turing machine simulator in Ruby.
We can implement Ruby as a Turing machine.



JavaScript

Ruby

Python

Lambda calculus Turing machines

SKI calculusTag systems

Partial recursive 
functions

Game of Life

Rule 110C++ Haskell

Lisp Register machines

Magic: The 
Gathering

C

Java

XSLT



Universal systems can run software.

We don’t just want machines, we want 
general-purpose machines.



PROGRAMS ARE DATA



>> puts 'hello world'
hello world
=> nil

>> program = "puts 'hello world'"
=> "puts 'hello world'"

>> bytes_in_binary = program.bytes.
                       map { |byte| byte.to_s(2).rjust(8, '0') }
=> ["01110000", "01110101", "01110100", "01110011", "00100000",
    "00100111", "01101000", "01100101", "01101100", "01101100",
    "01101111", "00100000", "01110111", "01101111", "01110010",
    "01101100", "01100100", "00100111"]

>> number = bytes_in_binary.join.to_i(2)
=> 9796543849500706521102980495717740021834791



>> number = 9796543849500706521102980495717740021834791
=> 9796543849500706521102980495717740021834791

>> bytes_in_binary = number.to_s(2).scan(/.+?(?=.{8}*\z)/)
=> [ "1110000", "01110101", "01110100", "01110011", "00100000",
    "00100111", "01101000", "01100101", "01101100", "01101100",
    "01101111", "00100000", "01110111", "01101111", "01110010",
    "01101100", "01100100", "00100111"]

>> program = bytes_in_binary.map { |string| string.to_i(2).chr }.join
=> "puts 'hello world'"

>> eval program
hello world
=> nil



UNIVERSAL SYSTEMS
+

PROGRAMS ARE DATA
=

INFINITE LOOPS



Every universal system can simulate every other 
universal system, including itself.

More specifically: every universal programming 
language can implement its own interpreter.



def evaluate(program, input)
  # parse program
  # evaluate program on input while capturing output
  # return output
end



>> evaluate('print $stdin.read.reverse', 'hello world')
=> "dlrow olleh"



def evaluate(program, input)
  # parse program
  # evaluate program on input while capturing output
  # return output
end

def evaluate_on_itself(program)
  evaluate(program, program)
end



>> evaluate_on_itself('print $stdin.read.reverse')
=> "esrever.daer.nidts$ tnirp"



def evaluate(program, input)
  # parse program
  # evaluate program on input while capturing output
  # return output
end

def evaluate_on_itself(program)
  evaluate(program, program)
end

program = $stdin.read

if evaluate_on_itself(program) == 'no'
  print 'yes'
else
  print 'no'
end

does_it_say_no.rb



$ echo 'print $stdin.read.reverse' | ruby does_it_say_no.rb
no

$ echo 'print "no" if $stdin.read.include?("no")' | ruby does_it_say_no.rb
yes

$ ruby does_it_say_no.rb < does_it_say_no.rb
???



does_it_say_no.rb

yes
no

never finish
other output?

does_it_say_no.rb

✘ ✔✘ ✘



Ruby is universal

so we can write #evaluate in it

so we can construct a special program that loops forever



so here's one

PROGRAM
IMPOSSIBLE



Sometimes infinite loops are bad.

We could remove features from a language 
until there’s no way to cause an infinite loop.



remove while loops etc, only allow iteration 
over finite data structures

to prevent (λx.x x)(λx.x x)

e.g. only allow a method to call other methods 
whose names come later in the alphabet

• No unlimited iteration

• No lambdas

• No recursive method calls

• No blocking I/O
• ...



The result is called a total 
programming language.

It must be impossible to write 
an interpreter for a total 

language in itself.



if we could write #evaluate in a total language

so it must be impossible to write #evaluate in one

then we could use it to construct a special program 
that loops forever

but a total language doesn’t let you write programs 
that loop forever



(That’s weird, because a total language’s 
interpreter always finishes eventually, so 

it feels like the kind of program we 
should be able to write.)



We could write an interpreter for a total language 
in a universal language, or in some other more 

powerful total language.



ABOUT
REALITY?

WHAT
okay but



#evaluate is an impossible program for any 
total language, which means that total 

languages can’t be universal.

Universal systems have impossible programs too.



input = $stdin.read
puts input.upcase

This program always finishes.*

* assuming STDIN is finite & nonblocking



input = $stdin.read

while true
  # do nothing
end

puts input.upcase

This program always loops forever.



Can we write a program that can
decide this in general?

(This question is called the halting problem.)



input = $stdin.read
output = ''

n = input.length

until n.zero?
  output = output + '*'
  n = n - 1
end

puts output



require 'prime'

def primes_less_than(n)
  Prime.each(n - 1).entries
end

def sum_of_two_primes?(n)
  primes = primes_less_than(n)
  primes.any? { |a| primes.any? { |b| a + b == n } }
end

n = 4

while sum_of_two_primes?(n)
  n = n + 2
end

print n



def halts?(program, input)
  # parse program
  # analyze program
  # return true if program halts on input, false if not
end



>> halts?('print $stdin.read', 'hello world')
=> true

>> halts?('while true do end', 'hello world')
=> false



def halts?(program, input)
  # parse program
  # analyze program
  # return true if program halts on input, false if not
end

def halts_on_itself?(program)
  halts?(program, program)
end

program = $stdin.read

if halts_on_itself?(program)
  while true
    # do nothing
  end
end

do_the_opposite.rb



$ ruby do_the_opposite.rb < do_the_opposite.rb



do_the_opposite.rb

eventually finish loop forever

do_the_opposite.rb

✘ ✘



Every real program must either loop forever 
or not, but whichever happens, #halts? 

will be wrong about it.

do_the_opposite.rb forces #halts? to 
give the wrong answer.



if we could write #halts?

so it must be impossible to write #halts?

then we could use it to construct a special program 
that forces #halts? to give the wrong answer

but a correct implementation of #halts? 
would always give the right answer



WHO
CARES?

okay but



We never actually want to ask a computer
whether a program will loop forever.

But we often want to ask computers
other questions about programs.



def prints_hello_world?(program, input)
  # parse program
  # analyze program
  # return true if program prints "hello world", false if not
end



>> prints_hello_world?('print $stdin.read.reverse', 'dlrow olleh')
=> true

>> prints_hello_world?('print $stdin.read.upcase', 'dlrow olleh')
=> false



def prints_hello_world?(program, input)
  # parse program
  # analyze program
  # return true if program prints "hello world", false if not
end

def halts?(program, input)
  hello_world_program = %Q{
    program = #{program.inspect}
    input = $stdin.read
    evaluate(program, input)
    print 'hello world'
  }

  prints_hello_world?(hello_world_program, input)
end



if we could write #prints_hello_world?

so it must be impossible to write 
#prints_hello_world?

then we could use it to construct a correct 
implementation of #halts?

but it’s impossible to correctly implement #halts?



Not only can we not ask
“does this program halt?”,

we also can’t ask
“does this program do
what I want it to do?”.



This is Rice’s theorem:

Any interesting property
of program behavior

is undecidable.



WHY

HAPPEN?

DOES
THIS



We can’t look into the future and predict 
what a program will do.

The only way to find out for sure is to run it.

But when we run a program, we don’t know 
how long we have to wait for it to finish. 

(Some programs never will.)



Any system with enough power to be self-referential 
can’t correctly answer every question about itself.

We need to step outside the self-referential system 
and use a different, more powerful system to answer 

questions about it.

But there is no more powerful system to upgrade to.



HOW

COPE?
CAN WE



• Ask undecidable questions, but give up if an 
answer can’t be found in a reasonable time.

• Ask several small questions whose answers 
provide evidence for the answer to a larger 
question.

• Ask decidable questions by being conservative.

• Approximate a program by converting it into 
something simpler, then ask questions about the 
approximation.



Stuart
U

nderstanding C
om

putation

From Simple Machines to Impossible Programs

Tom Stuart

Understanding 
Computation

Finally, you can learn computation theory and programming 
language design in an engaging, practical way. Understanding 
Computation explains theoretical computer science in a context 
you’ll recognize, helping you appreciate why these ideas matter 
and how they can inform your day-to-day programming. 

Rather than use mathematical notation or an unfamiliar academic 
programming language like Haskell or Lisp, this book uses Ruby 
in a reductionist manner to present formal semantics, automata 
theory, and functional programming with the lambda calculus. It’s 
ideal for programmers versed in modern languages, with little or 
no formal training in computer science.

 Q Understand fundamental computing concepts, such as Turing 
completeness in languages 

 Q Discover how programs use dynamic semantics to 
communicate ideas to machines 

 Q Explore what a computer can do when reduced to its bare 
essentials 

 Q Learn how universal Turing machines led to today’s general-
purpose computers 

 Q Perform complex calculations, using simple languages and 
cellular automata 

 Q Determine which programming language features are 
essential for computation 

 Q Examine how halting and self-referencing make some 
computing problems unsolvable 

 Q Analyze programs by using abstract interpretation and type 
systems

Programming / C++

Understanding Computation

ISBN: 978-1-449-32927-3

US $34.99  CAN $36.99

oreilly.com

Twitter: @oreillymedia
facebook.com/oreilly

Tom Stuart, a computer 
scientist and programmer,  
is the founder of Codon, a 
digital product consultancy  
in London. He works as a 
consultant, mentor, and 
trainer, helping companies  
to improve the quality and 
clarity of their approach to 
creating software products.

THE END

QCON
(50% off ebook, 40% off print)

http://computationbook.com/

@tomstuart / tom@codon.com


