
Docker Clustering
batteries included, but removable

Jessie Frazelle @frazelledazzell Qcon London: March 5th, 2015

https://twitter.com/frazelledazzell

Outline

- Shortest ever intro to Docker

- Intro to Swarm (Docker clustering)

- Demo of Swarm

- Future of Swarm

What is Docker?

Docker is a runtime for containers.

Whoa what’s a container?

A container is a concept made from
linux namespaces, cgroups, & pivot
roots.

Outline

- Shortest ever intro to Docker

- Intro to Swarm (Docker clustering)

- Demo of Swarm

- Future of Swarm

Intro to Swarm

Native Clustering for Docker

Serves the standard Docker API

Transparently scale Docker API
consumers to multiple hosts

batteries included
but removable

Discovery

out-of-the-box

native discovery

options

etcd

consul

zookeeper

Schedulers

out-of-the-box

bin-packing (native)

options

random (native)

mesos (coming soon, in the works)

How to use Swarm

installing swarm

$ docker pull swarm

create a cluster

$ docker run --rm swarm create

6856663cdefdec325839a4b7e1de38e8 # <- unique <cluster_id>

on each of your nodes, start the swarm agent

$ docker run -d swarm join \

--addr=<node_ip:2375> token://<cluster_id>

Minimal Image (small tangent)

A Whopping 7.19 MB

The Dockerfile -->

FROM scratch

COPY ./swarm /swarm

COPY ./certs/ca-certificates.crt

 /etc/ssl/certs/ca-certificates.crt

ENV SWARM_HOST :2375

EXPOSE 2375

VOLUME /.swarm

ENTRYPOINT ["/swarm"]

CMD ["--help"]

How to use Swarm

start the manager on any machine or your laptop

$ docker run -d -p <swarm_port>:2375 \

swarm manage token://<cluster_id>

list nodes in your cluster

$ docker run --rm \

swarm list token://<cluster_id> <node_ip:2375>

Using the Docker CLI + Swarm

use the regular docker cli

$ export DOCKER_HOST=tcp://<swarm_ip:swarm_port>

$ docker info

$ docker ps

$ docker logs ...

manage resources

$ docker run -m 1g

$ docker run -c 1

$ docker run -p 80:80

Constraints
standard from docker info

(storagedriver, executiondriver, kernelversion, operatingsystem)

$ docker run -e constraint:operatingsystem=debian ...

$ docker run -e constraint:storagedriver=btrfs ...

custom with host labels

$ docker -d --label init=systemd ...

$ docker -d --label init=sysvinit ...

$ docker run -e constraint:init!=systemd ...

$ docker -d --label environment=production ...

$ docker run -e constraint:environment=production ...

Affinity

containers

$ docker run -d --name web1 -p 80:80 nginx

$ docker run -d --name stats -e affinity:container==web1 stats

images

$ docker run -d -e affinity:image==redis redis

$ docker run -d -e affinity:image==nginx nginx

Other Filters

ports

$ docker run -d --name web1 -p 80:80 nginx

$ docker run -d --name web2 -p 80:80 nginx

^ defaults on different host

dependency

$ docker run --volumes-from some-container ...

$ docker run --link some-container:alias ...

$ docker run --net container:some-container ...

Outline

- Shortest ever intro to Docker

- Intro to Swarm (Docker clustering)

- Demo of Swarm

- Future of Swarm

The Servers

Storage Drivers (medium tangent)

Ubuntu Host --> AUFS

Fedora Host --> Device Mapper

Debian Host --> Overlay

AUFS

- First storage driver implemented

- Ubuntu uses it in their default

kernel for Live CD
where root filesystem is COW (copy-on-write)

between CD/DVD/USB

Pitfalls: not in mainline kernel

Device Mapper

- Used by RedHat, default to Fedora

- In mainline kernel

- Creates “pools” of blocks
Each container & each image gets its own block device

- Each time a new block (or a copy-on-
write block) is written, a block is
allocated from the pool

Device Mapper

Pitfalls: By default, Docker puts data
and metadata on a loop device backed
by a sparse file

Which is cool but has terrible performance.

Each time a container writes to a new block...

a block has to be allocated from the pool...

and when it's written to...

a block has to be allocated from the sparse file...

and sparse file performance is not the greatest

Overlay

- The hero we all deserve

- In mainline kernel (>=3.18)

- works a lot like AUFS in that it
does not need its own partition and
works out-of-the-box

Pitfalls: requires kernel >= 3.18

BTRFS (not used for demo, but important)

- In mainline kernel

- Does copy-on-write at filesystem

level
integrates the snapshot and block pool management features
at the filesystem level, instead of the block device level

Pitfalls: have to setup partition

Back to the demo...

Outline

- Shortest ever intro to Docker

- Intro to Swarm (Docker clustering)

- Demo of Swarm

- Future of Swarm

Future of Swarm

- Rescheduling Policies

- More backend drivers, Mesos, etc

- Leader Election (Distributed State)

- Keeping up to date feature-wise with
things added to the engine

Fin.

Jessie Frazelle @frazelledazzell jess@docker.com

https://twitter.com/frazelledazzell

