
Peter Milne

peter@aerospike.com

@helipilot50

Principles of High Load

mailto:peter@aerospike.com

Wisdom vs Guessing

"Everything that can be

invented has been invented.” -
Charles Holland Duell – US Patent

Office 1899

“Insanity is doing the same

thing over & over again

expecting different results”
– Albert Einstein

High load

3

Shinagawa Railway Station – Tokyo, Japan
12 December 2014 08:22 AM

MILLIONS OF CONSUMERS

BILLIONS OF DEVICES

APP SERVERS

DATA

WAREHOUSEINSIGHTS

Advertising Technology Stack

WRITE CONTEXT

In-memory NoSQL

WRITE REAL-TIME CONTEXT

READ RECENT CONTENT

PROFILE STORE

Cookies, email, deviceID, IP address, location,

segments, clicks, likes, tweets, search terms...

REAL-TIME ANALYTICS

Best sellers, top scores, trending tweets

BATCH ANALYTICS

Discover patterns,

segment data:

location patterns,

audience affinity

Currently about 3.0M / sec in North

American

Travel Portal

PRICING DATABASE
(RATE LIMITED)

Poll for

Pricing

Changes

PRICING

DATA

Store

Latest

Price

SESSION

MANAGEMENT

Session

Data
Read

Price

XDR

Airlines forced interstate

banking

Legacy mainframe

technology

Multi-company

reservation and pricing

Requirement: 1M TPS
allowing overhead

Travel App

Financial Services – Intraday Positions

LEGACY DATABASE
(MAINFRAME)

Read/Write

Start of Day

Data Loading

End of Day

Reconciliation

Query
REAL-TIME

DATA FEED

ACCOUNT

POSITIONS

XDR

10M+ user records

Primary key access

1M+ TPS

Finance App

Records App

RT Reporting App

Principles

Little's Law

The long-term average number of customers L in a stable system is equal

to the long-term average effective arrival rate λ, multiplied by the average

time W a customer spends in the system

W S

R

λλ

ρ

Queuing Theory

■ Queuing theory is the mathematical study of waiting lines, or queues.

Arrival Rate (λ) Departure

Average Wait

in Queue (Wq)

Average Number

in Queue (Lq)

Service

Rate (μ)

Average Time in System (W)

Average Number in System (L)

Throughput

Throughput is the rate of production or the rate at which something can

be processed

Similar to: “work done / time taken”

The power of a system is proportional to its throughput

Latency

Latency is a time interval between the stimulation and response, or, from

a more general point of view, as a time delay between the cause and the

effect of some physical change in the system being observed.

Concurrency

■ Concurrency is a property of systems in which several computations are

executing simultaneously, and potentially interacting with each other.

Shared resource

Division of labor – Parallel processing

Parallel processing is the simultaneous use of more than one CPU or

processor core to execute a program or multiple computational threads.

Ideally, parallel processing makes programs run faster because there are

more engines (CPUs or cores) running it. In practice, it is often difficult to

divide a program in such a way that separate CPUs or cores can execute

different portions without interfering with each other.

Concurrency vs Parallelism

Bottle necks

Bottleneck is a phenomenon where the performance or capacity of an

entire system is limited by a single or small number of components or

resources

Locks, Mutexes and Critical Regions

■ Lock

■Atomic Latch

■Hardware implementation

■ 1 machine instruction

■OS system routine

■ Mutex

■Mutual exclusion

■Combination of a Lock and a

Semaphore

■ Critical section

■Region of code allowing 1

thread only.

■Bounded by Lock/Mutex

Basic computer architecture

Multi-processor, Multi-core, NUMA

■ Multi-processor
■> 1 processor sharing Bus and

Memory

■ Multi-core
■> 1 processor in a chip

■Each with local Memory

■Access to shared memory

■ Non Uniform Memory Allocation
■Local memory faster to access than

shared memory

■ Multi-channel Bus

18

Flash - SSDs

■ Uses Floating Gate MOSFET

■ Arranged into circuits “similar” to RAM

■ Packaged as PCIe or SATA devices

■ No seek or rotational latencies

19

How Aerospike does it

The Big Picture

Smart Client -Distributed Hash table

■ Distributed Hash Table with No Hotspots

■Every key hashed with RIPEMD160

into an ultra efficient 20 byte (fixed length) string

■Hash + additional (fixed 64 bytes) data

forms index entry in RAM

■Some bits from hash value are used to

calculate the Partition ID (4096 partitions)

■Partition ID maps to Node ID in the cluster

■ 1 Hop to data

■Smart Client simply calculates Partition

ID to determine Node ID

■No Load Balancers required

The Cluster (servers)

■ Federation of local servers

■XDR to remote cluster

■ Automatic load balancing

■ Automatic fail over

■ Detects new nodes (multicast)

■ Rebalances data (measured rate)

■ Adds nodes under load

■ Rack awareness

■ Locally attached storage

Data Distribution

Data is distributed evenly across nodes in a cluster using the Aerospike

Smart Partitions™ algorithm.

■ RIPEMD160 (no collisions yet found)

■ 4096 Data Partitions

■ Even distribution of

■Partitions across nodes

■Records across Partitions

■Data across Flash devices

■ Primary and Replica

Partitions

Automatic rebalancing

Adding, or Removing a node, the Cluster
automatically rebalances

1. Cluster discovers new node via gossip
protocol

2. Paxos vote determines new data
organization

3. Partition migrations scheduled

4. When a partition migration starts,
write journal starts on destination

5. Partition moves atomically

6. Journal is applied and source data deleted

After migration is complete, the Cluster is
evenly balanced.

Data Storage Layer

Data on Flash / SSD

■ Indexes in RAM (64 bytes per)

■Low wear

■ Data in Flash (SSD)

■Record data stored contiguously

■ 1 read per record (multithreaded)

■Automatic continuous defragment

■Log structured file system, “copy on write”

■O_DIRECT, O_SYNC

■Data written in flash optimal blocks

■Automatic distribution (no RAID)

■Writes cached

BLOCK INTERFACE

SSD SSDSSD

AEROSPIKE

HYBRID MEMORY SYSTEM™

Copy on write – Log structured writes

■ Record is written to new block

■Not written in place

■Much faster

■ Even wearing of Flash

Service threads, Queues, Transaction threads

T
C

P
/I

P
 S

o
c
k
e
t

F
la

sh
 S

to
ra

g
e

Service Threads

Service Queues

Transaction

Threads

YCSB – Yahoo Cloud Serving Benchmark

0

2.5

5

7.5

10

0 50,000 100,000 150,000 200,000

A
v
e
ra

g
e
 L

a
te

n
c
y
,

m
s

Throughput, ops/sec

Balanced Workload Read Latency

Aerospike

Cassandra

MongoDB

0

4

8

12

16

0 50,000 100,000 150,000 200,000

A
v
e
ra

g
e
 L

a
te

n
c
y
,

m
s

Throughput, ops/sec

Balanced Workload Update Latency

Aerospike

Cassandra

MongoDB

Throughput vs Latency

High load failures

Networking – Message size and frequency

Networking - design

Big Locks

■ Locks held for too long

■ Increases latency

■ Decreases concurrency

■ Results in a bottleneck

Computing power not used

■ Network IRQ not balanced across all Cores

■1 core does all the I/O

■ Code does not use multiple cores

■Single threaded

■1 core does all the processing

■ Uneven workload on Cores

■1 core 90%, others 10%

■ Code not NUMA aware

■Using shared memory

Stupid code

■ 1980’s programmers worried about

■Memory, CPU cycles, I/Os

■ 1990’s programmers worried about

■Frameworks, Dogma, Style, Fashion

■ Stupid code

■Unneeded I/Os

■Unneeded object creation/destruction

■Poor memory management

■Overworked GC

■Malloc/Free

■Loops within loops within loops

■Unnecessary recursion

■Single threaded/tasked

■Big locks

Poor load testing

■ BAA opened Heathrow’s fifth

terminal at a cost of £4.3 billion.

■ Passengers had been promised

a "calmer, smoother, simpler

airport experience".

■ The baggage system failed,

23,205 bags required manual

sorting before being returned to

their owners.

Uncle Pete’s advice

Lock size

Make locks small

■ Increase concurrency

■ Reduce latency

Parallelism at every step

■ Multiple machines

■ Multiple cores

■ Multiple Threads,

■ Multiple IRQs

■ IRQ balancing

■ Multi-channel Bus

Efficient and robust partitioning

Partition your workload (Application) with

■ Reliable, proven Algorithm

■No collisions

■No corner cases

Latency of your application

Latency = Sum(LD) + Sum(LS)

■LD = Device latency

■LS = Stupidity latency

■ Minimise stupidity

Load test

■ Simulation

■Simulate real load

■ Nothing is better than real data

■Record live data and playback in testing

Finally..

A well designed and build application should

■ Deliver the correct result

■ Perform adequately

■ Be maintainable by the average Guy or Girl

Klausimai?

Questions?

Dúvidas?

Fragen?

質問がありますか？

