
Protocols
The Glue for Applications

Torben Hoffmann
CTO @ Erlang Solutions

torben.hoffmann@erlang-solutions.com
@LeHoff

Why are we here?

Distributed Systems

source: http://www.krug-soft.com/297.html

How likely is it that
 this will “just work”?

http://www.krug-soft.com/297.html

How often does
WhatsApp have a

failure?

WhatsApp MTBF

 >600 machines
 Assume failure rate of 1 in 2 years

* http://www.abeacha.com/NIST_press_release_bugs_cost.htm

 1 machine going down daily!!

MTBF =
1

1/2 + ...+ 1/2
= 1/300a ⇡ 29h

http://www.abeacha.com/NIST_press_release_bugs_cost.htm

Failure is unavoidable

 Global cost of IT failures

 Annually
 (Gene Kim and Mike Orzen)

 $3 Trillion

source: http://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion/

http://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion/

The thinking it took to
get us into this mess

is not the same
thinking that is going to

get us out of it.

Source: http://www.sustainwellbeing.net/lemmings.html

http://www.sustainwellbeing.net/lemmings.html

Methodology
&

Technology

Protocols

Paxos

{ Acceptors }
Proposer Main Aux Learner
| | | | | | -- Phase 2 --
X----------->|->|->| | | Accept!(N,I,V)
| | | ! | | --- FAIL! ---
|<-----------X--X--------------->| Accepted(N,I,V)
| | | | | -- Failure detected (only 2 accepted) --
X----------->|->|------->| | Accept!(N,I,V) (re-transmit, include Aux)
|<-----------X--X--------X------>| Accepted(N,I,V)
| | | | | -- Reconfigure : Quorum = 2 --
X----------->|->| | | Accept!(N,I+1,W) (Aux not participating)
|<-----------X--X--------------->| Accepted(N,I+1,W)
| | | | |

Source: https://en.wikipedia.org/wiki/Paxos_(computer_science)#Byzantine_Paxos

https://en.wikipedia.org/wiki/Paxos_(computer_science)#Byzantine_Paxos

S
P
P

ingle
age
rogrammer

Syndrome

Protocol
=

How to solve a problem
together

Interaction
Diagram

Message
Sequence

Chart

The Golden Trinity Of Erlang

Simple Manager/
Worker Pattern

Failures in your
protocol

Separation of
Concerns

 Not embracing failure means you loose the
ability to handle failures gracefully!

Golden Path Failure Handling

BAD!GOOD!!!

Fault In-Tolerance
Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

source: http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/
should-we-be-worried-about-this-brooklyn-measles-outbreak

http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/should-we-be-worried-about-this-brooklyn-measles-outbreak

Fault Tolerance

Erlang is fault tolerant by design
 ⇒ failures are embraced and managed

source: http://johnkreng.wordpress.com/tag/jean-claude-van-damme/

http://johnkreng.wordpress.com/tag/jean-claude-van-damme/

Stock Exchange

The Trigger…

 Erlang-Questions on using ETS for sell
and buy orders:

 http://erlang.org/pipermail/erlang-
questions/2014-February/077969.html

 Painful…

http://erlang.org/pipermail/erlang-questions/2014-February/077969.html

An Exchange

 Connects buyers and sellers

 Buyers post buy intentions

 Sellers post sell intentions

Basic Erlang Idea

One process per buy/sell intention

Processes to negotiate deals
by exchanging messages

Communication

 Use gproc as pub-sub mechanism to
announce buy and sell intentions

 All buyers listen to sell intention

 All sellers listen to buy intentions

 Can happen when

 Negotiation by 3-way handshake

Deals

priceseller pricebuyer

Buyer Arrives

Unique reference to
identify the sell offerSeller’s Pid

5 pt

Seller Arrives

What About Failures?

What Can Go Wrong?

1. Buyer dies

3. Buyer dies

2. Seller dies

1 & 2 can be fixed
by timing out

Danger!!
Seller has closed the
deal on his side

Simple re-start
leaves the buyer
at 3@5

Monitor each other

 Removes the need for timeouts

 Still not sure how far the other side got

Transaction Log Per
Process

 Just replay back to the last state

 Issues:

 Messages cannot be replayed

 Must ask partner about their view on
the status of the deal

Ledger

 Create Ledger process that tracks all
completed deals

 Each buyer and seller get a unique
OfferID when started

Re-cap

 A process per cell
 Short-lived processes for small tasks
 Focus on the protocols between processes
 Supervisor to restart

Good Design

 Focus on protocols (MSCs)
 Ask “What could go wrong here?”

Tools

 Lots of processes!!
 Supervisors
 Link and monitor
 Timeouts
 Transaction logs (ledgers)

Food for Thought

 What can I only do in Erlang?
 http://erlang.org/pipermail/erlang-
questions/2014-November/081570.html

You can avoid writing your
own service framework.

Craig Everett

http://erlang.org/pipermail/erlang-questions/2014-November/081570.html

Testing

 Async protocols are nasty
 Use EQC - Property Based Testing
 Focus on one process
 Mock the calls to others

Going Deeper

 Erlang Matching Business Needs
 Thinking Like an Erlanger
 Game of life
 https://github.com/lehoff/egol

 Erlang Exchange
 https://github.com/lehoff/erlang_exchange

http://www.slideshare.net/torbenhoffmann90/ndc-london-2014-erlang-patterns-matching-business-needs
http://www.slideshare.net/torbenhoffmann90/2014-12ndcthinking
https://github.com/lehoff/egol
https://github.com/lehoff/erlang_exchange

Summary

Protocol
=

How to solve a problem
together

Interaction
Diagram

Message
Sequence

Chart

Key building blocks

 Share nothing processes
 Message passing
 Fail fast approach
 Link/monitor concept
 EQC for async testing

