
I m p l e m e n t i n g C o n t i n o u s D e l i v e r y

ADJUSTING YOUR
ARCHITECTURE

Rachel Laycock
@rachellaycock

continuous delivery

 Our highest priority is to
satisfy the customer
through early and
continuous delivery of
valuable software

“You can’t have
Continuous Delivery”

“Once upon a time I was
a happy developer…"

“I thought I knew what
Continuous Delivery was”

“I was doing CD on my
projects”

“Then one day…"

“...a client wanted Continuous
Delivery”

...and we said “sure”

“...but 3 months later they
were still asking…"

“Are we there yet?”

Their code base was
huge and complex

1. Conway’s Law is THE LAW

3. Evolve your architecture

2. Keep things small

continuous delivery is big

Organisational Alignment

Release Management

Architecture Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

stuff that is
hard to change

?

civil architecture

town planning

1. CONWAY’S LAW IS THE LAW

20

conway’s law

“organizations which design systems ... are
constrained to produce designs which are

copies of the communication structures of
these organizations”

—Melvin Conway

Melvin Conway: “Because the design that
occurs first is almost never the best
possible, the prevailing system concept may
need to change. Therefore, flexibility of
organisation is important to effective design.”

the wrong side of the law

layered / tiered architecture

User Interface
Channels
Application

Business Logic & Rules
Middleware
Services platform

Database
Systems of Record

current state

AndroidIOS

Mobile

Shared
web web

web web

problems?

AndroidIOS

Mobile

Shared
web web

web web

ball of mud

a real ball of mud

“expediency over design”
- Brian Foot & Joseph Yoder

technical debt

http://martinfowler.com/bliki/images/techDebtQuadrant.png

coupling problems

code
artifact

afferent efferent

Software architecture

represents the tension

between coupling &

cohesion.

32

problems?

AndroidIOS

Mobile

Shared
web web

web web

brownfield

untangling

God Object: an object that
knows too much or does too much

metrics

strangler pattern

the law on your side

“team designs are the first draft of
your architecture”

- Michael Nygard

vertical teams

inverse conway manoeuvre

Build teams that look like
the architecture you want

(and it will follow).

the new world

payments statements rewards

continuous delivery
Teams with low efferent
coupling deliver relatively
independently into a common
integration pipeline (without
fearing breaking each others
builds).

2. KEEP THINGS SMALL
`

44

small enough to fit in your head

rewrite over maintain

(10—1000 LOC)-ish / service

single responsibility

small, single responsibility

decentralised governance

future Rachel is much smarter

than present Rachel

preparing for the unknown

“with great power…”

“fine grained SOA…?”

Products

Customers

user interface

server-side

DBA

traditional monolith

Model

User Interface

ball of mud

monolith drawbacks
Complexity increases

Hard to change

Low reusability

Slow to deploy

Testing takes time

High cognitive load

Reliability and scale is hard

enter SOA

Explicit Boundaries
Shared Contract and Schema, not class
Policy Driven
Autonomous

http://www.infoq.com/articles/tilkov-10-soa-principles

Customer
Product

What “Traditional” SOA Got Right
Breaking monoliths into services

Focus on integration over internal coupling

Prefer BASE to ACID

What “Traditional” SOA Missed

Architecture is abstract until operationalized.

Impact of Conway’s Law

The folly of trying to build “Uber” services (Customer)

Didn’t support easy change (ESB pattern)

so microservices?

59

fallacies of distributed computing

1.The network is reliable.
2.Latency is zero.
3.Bandwidth is infinite.
4.The network is secure.
5.Topology doesn't change.
6.There is one administrator.
7.Transport cost is zero.
8.The network is homogeneous.

principles SOA

Explicit Boundaries
Shared Contract and Schema, not class
Policy Driven
Autonomous

http://www.infoq.com/articles/tilkov-10-soa-principles

boundaries are explicit

boundaries are explicit

Ordering Shipping

Billing

Catalog

Reporting

65

Ordering Shipping

Billing

Catalog

Reporting

What about to integration?

asynchronous vs synchronous

eventual consistency

Message Channel

Publish event

Subscribe to event

ACID

▫︎Atomic

▫︎Consistent

▫︎ Isolated

▫︎Durable

BASE

▫︎Basic Availability

▫︎ Soft-state

▫︎ Eventual Consistency

 …because CAP Theorem

www.julianbrowne.com/article/viewer/brewers-cap-theorem

Formal proof: http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf

As your system becomes more distributed,
prefer BASE to ACID…

http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf

Prefer Choreography to Orchestration

traditional SOA /
ESB pattern

Because Conway’s Law!

pack of
enterprise architects

Standardize on integration, not platform

…but don’t go crazy

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Have one, two or maybe three
ways of integrating, not 20.

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Pick some sensible conventions,
and stick with them.

hexagonal architecture

http://alistair.cockburn.us/Hexagonal+architecture

microservice architectures promote coupling from
application to integration architecture.

explicit about
coupling

forces coarser-
grained coupling

engineering
safety nets

undisciplined coupling = mess
coupling dynamics become integration issues

microservice architectures promote coupling from
application to integration architecture.

Pros:
 explicit about coupling dynamics
 forces coarser-grained coupling points
Cons:
 undisciplined coupling becomes a mess
 transaction boundaries become an

architectural issue

the monolith backlash?

return to the monolith?

Component

Library
Service

Libraries and Services are
two forms of component

Components are units of software
that can be independently
replaced and upgraded

Libraries run within a single
process, communicating
through language function
call mechanisms

Services run in separate processes,
communicating with networking
mechanisms such as HTTP or TCP/IP

partitioning by existing coupling

God Object: an object that
knows too much or does too much

maturity

Yesterday’s best
practice is tomorrow’s

anti-pattern.

We inadvertently build
architectures to solve
outdated problems.

3. EVOLVE YOUR ARCHITECTURE

79

last responsible moment

all the things to consider

Security

Network

Devices/Hardware

Usability

architect for evolvability

http://tutorials.jumpstartlab.com/images/elevate/newrelic_snapshot.jpg

http://tutorials.jumpstartlab.com/images/elevate/newrelic_snapshot.jpg

architect for testability

conway’s law

1. Conway’s Law is THE LAW

3. Evolve your architecture

2. Keep things small

“hope is not a design method”

- Michael Nygard

88

if you fail to design for

production your life will be filled

with “excitement”

- Michael Nygard

89

@rachellaycock

THANK YOU!

Resources
Books:
• Continuous Delivery - Jez Humble, Dave Farley
• Working Effectively with Legacy Code - Michael Feathers
• Release It - Michael Nygard
• Domain Driven Design - Eric Evans

Articles/Blogs:
• Branch by Abstraction - Jez Humble:
http://continuousdelivery.com/2011/05/make-large-scale-changes-incrementally-with-branch-by-abstraction/
• Branch by Abstraction - Paul Hammant:
http://paulhammant.com/blog/branch_by_abstraction.html/
• Feature Toggles - Martin Fowler: http://martinfowler.com/bliki/FeatureToggle.html
• Evolutionary Architecture - Neal Ford: http://www.ibm.com/developerworks/views/java/libraryview.jsp?
search_by=evolutionary+architecture+emergent+design:
• Ball of Mud: http://www.laputan.org/mud/
• Demming - http://leanandkanban.wordpress.com/2011/07/15/demings-14-points/
• Coding Horror: http://www.codinghorror.com/blog/2007/11/the-big-ball-of-mud-and-other-architectural-
disasters.html
• Who needs an architect: http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
• Evolutionary Architecture and Emergent Design: http://www.ibm.com/developerworks/java/library/j-eaed1/
index.html
• Strangler Application: http://martinfowler.com/bliki/StranglerApplication.html
• Microservices: http://www.infoq.com/presentations/Micro-Services and http://yobriefca.se/blog/2013/04/29/
micro-service-architecture/ and http://davidmorgantini.blogspot.co.uk/2013/08/micro-services-what-are-micro-
services.html

http://continuousdelivery.com/2011/05/make-large-scale-changes-incrementally-with-branch-by-abstraction/
http://paulhammant.com/blog/branch_by_abstraction.html/
http://martinfowler.com/bliki/FeatureToggle.html
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=evolutionary+architecture+emergent+design:
http://www.laputan.org/mud/
http://leanandkanban.wordpress.com/2011/07/15/demings-14-points/
http://www.codinghorror.com/blog/2007/11/the-big-ball-of-mud-and-other-architectural-disasters.html
http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
http://www.ibm.com/developerworks/java/library/j-eaed1/index.html
http://martinfowler.com/bliki/StranglerApplication.html
http://www.infoq.com/presentations/Micro-Services
http://yobriefca.se/blog/2013/04/29/micro-service-architecture/
http://davidmorgantini.blogspot.co.uk/2013/08/micro-services-what-are-micro-services.html

