ThoughtWorks:

Implementing Continous Delivery

ADJUSTING YOUR
ARCHITECTURE

Rachel Laycock
@rachellaycock

Thought\Works:

continuous delivery

T llhson Wiy Sipmotino Sorios |

&1 Our highest priority is to
CONTINUOUS satisfy the customer
DELIVERY

through early anc
o s, S continuous delivery of
. ?g valuable software

“You ean’t have
Continuous Delivery”

“Once upon a time | was
a happy developer..."

‘I thought | knew what
Continuous Delivery was”

‘I was doing CD on my
projects”

“Then one day..."

“..a client wanted Continuous
Delivery”

..and we said “sure”

“..but 3 months later they
were still asking...”

Are we there yet?”

Their code base was
huge and complex

1. Conway’s Law Is THE LAW

2. Keep things small

3. Evolve your architecture

continuous delivery is big

Organisational Alignment

Release Management

Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

Stuff that is
hard to change

civil architecture

5
l'
.
i
|
.

- S
T
L

-“r‘.’ L2

I

it
:
T

il

.0‘00’.

:

AT

ISISIILT

=

SAIAISAAAT A ARl

ariva
C R 20
"arr

ASAATIINI T

r{.

i

.
:
¥
L

iﬂ'; .S:
il

‘M

ing

e \.\ sam
-\ b - m”g
. L AAs

ot

C

-
@O
oN
-
>
O |

ThoughtWorks:

1. CONWAY'S LAW IS THE LAW

conway'’s law

A ——

“organizations which design systems ... are
constrained to produce designs which are
copies of the communication structures of
these organizations”

—Melvin Conway

)

v

- s | =

Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law

Melvin Conway: “Because the design that
occurs first is almost never the best
possible, the prevailing system concept may
need to change. Therefore, flexibility of
organisation is important to effective design.”

the wrong side of the law

layered / tiered architecture

User Interface

Channels

Application

Business Logic & Rules
""* cervices

Services platform

Database

Systems of Record

current state

N

Shared

problems?

4 Andr0|d

@
web

/

S— Share —
 —— —

‘web’ <> <web)

Pt
Web

[|

‘expediency over design”

- Brian Foot & Joseph Yoder

technical debt

Reckless Prudent
“We don’t have time “We must ship now
for design™ and deal with
consequences”
Deliberate
Inadvertent
‘ , N “Now we know how we
‘What's Layering: should have done it”

http://martinfowler.com/bliki/images/techDebtQuadrant.png

coupling problems

R
S

.

code
artifact

S
“

afferent efferent

Software architecture
represents the tension
between coupling &
cohesion.

32

problems?

4 Andr0|d

@
web

/

S— Share —
 —— —

‘web’ <> <web)

Pt
Web

[|

field

brown

Wk

.

A
A\

AN

-
-
-

untangling

. — -
Ao | B
Y \‘,-“ et

God Object: an object that ¢
knows too much or does too much

M- b loa
bs o o »
v Prns nat
2

seovie [ammet (smmaee Uoatiore,id
o » " "

-

-l

metrics

T U e e
] » ¢ ’ » ¢ ¢

e el el e el Dnie e Lwad Bagen
’ ’ ¢ J 2

[L T b ond

strangler pattern

Customers Customers

Dispatcher

Existing
monolithic

application Original

monolithic

application

Customers

Dispatcher

Original
monolithic
application

New New
module module

the law on your side

“team designs are the first draft of
your architecture”

- Michael Nygard

vertical teams

Inverse conway manoeuvre

Cross- functional teams... ... organised around capabilities
Because Conway's Law

RBuild bteams Ehat Loolke Like

the architecture wou wank
(and it will follow).

the new world

payments statements rewards

continuous delivery

Teams with low efferent
coupling deliver relatively
independently into a common
integration pipeline (without
fearing breaking each others
builds).

ThoughtWorks:

2. KEEP THINGS SMALL

small, single responsibility

small enough to fit in your head

rewrite over maintain

(10—1000 . / Service

single responsibility

decentralised governance

[H}fo

preparing for the unknown

future Rachel is much smarter
than present Rachel

‘with great power...”

THE LiIFE OF A SOFTWARE MUCH LATER...I

ENGINEER .

OH MY. 1I’VE
DONE iT AGAIN),

CLEAN SLATE. SoLiD
FOUNDATIONS. THIS TIiME
T WillL ®BUILD THINGS THE

“fine grained SOA...?”

a
a2

Products
&

Customers x
a

4

a

xxx user interface
o &
23
g & DBA

server-side

a

traditional monolith

ball of mud

L -.. Q..\b-\
..\m...w Qs\\y\ \ LN
v 2 Tl Y AJ

~ ad s,\.: -,.Ia
Q\
\It
>

- —

AN BN N
- * - : '\ \ \ ”o»‘n...\u-" Y- .!
\-,~4 g i ¢ ,) v -.' —
AT S v \ ‘ _)
L

AN

\..\Lb..

.

UL

.

monolith drawbacks

Complexity increases
Hard to change

Low reusability

Slow to deploy
Testing takes time
High cognitive load

Reliability and scale is hard

enter SOA

—xplicit Boundaries
Shared Contract and Schema, not class

Policy Driven
AUtONOMOUS

http://www.infog.com/articles/tilkov-10-soa-principles

roduct

Customer

What “Traditional” SOA Got Right

P Breaking monoliths into services
® rocus on integration over internal coupling
® Prefer BASE to ACID

What “Traditional” SOA Missed

® Architecture is abstract until operationalized.

B Impact of Conway's Law

P The folly of trying to build “Uber” services (Customer)
P Didnt support easy change (ESB pattern)

SO microservices?

Jay Kreps X -2 Follow

jaykreps

Microservices == distributed objects for
hipsters (what could possibly go wrong?)
yobriefca.se/blog/2013/04/2...

66 s SERNGBCRED

59

fallacies of distributed computing

1.The network is reliable.
Latency Is zero.
Bandwidth is infinite.
.The network is secure.
.Topology doesn't change.
There is one administrator.
Transport cost Is zero.

The network is homogeneous.

00~ Oy U1l W N

principles SOA

—xplicit Boundaries
Shared Contract and Schema, not class

Policy Driven
AUtONOMOUS

http://www.infog.com/articles/tilkov-10-soa-principles

oundaries are explici

push state change with

: REPOSITORIES
access with

access with

encapsulate with
express change with

express model with_— / \

act as root of
express identity with \
/ encapsulate AGGREGATES
express state & with
omputation with VALUE \
OBJECTS)
encapsulate with
model gives structure to \ encapsulate with
isolate domain
expressions with

define model within LAYERED encapsulate with
ARCHITECTURE
keep model CONT!
unified by NUOUS
INTEGRATION
SHARED

ENTITIES

UBIQUITOUS LANGUAGE

cultivate rich
model with

names
e KERNEL SHARED
BOUNDED CONTEXT KERNEL
CORE DOMAIN interdependen
contexts form overiap allied
contexts through
CUSTOMER
elate allied contexts as ISUPPLIER
WOk e assess/overview
' | . autonomous, clean relaionships with
avoid overivesting in minimize translation
CONFORMIST
segregate the suppod multiple
GENERIC conceptual messes iros looms ents through
SUBDOMAINS [OPEN HOSTY
0N SERVICE

translate and insulate ' I
unilaterally with oosely couple
\L contexts formalize

BiG BALL OF MUD through
ANTI- PUBLISHED
CORRUPTION LANGUAGE
LAYER

boundaries are explicit

push slate change with

, REPOSITORIES
access with

access with

encapsulate with /

act as root of
express identity with N

express change with
express model with_—

/ encapsulate
express state & with
omputation with VALUE \
DESIGN encapsulate with
model gives structure to \) encapsulate with
isolate domain
expressions with

define model within LAYERED encapsulate with

ARCHITECTURE

FACTORIES

UBIQUITOUS LANGUAGE

keep model
unified by

CONTINUOUS
INTEGRATION

SHARED

KERNEL SHARED

BOUNDED CONTEXT KERNEL

interdependen '
contexts form overlap allied

" contexts through
CUSTOMER
rolate alliad contavie ac ISIIDDI IER

Ordering Shipping

| Billing

Repo

Catalog

Ordering Shipping_.

| Billing

Repo

Catalog

What about to integration?

asynchronous vs synchronous

A~ PN

N/
O <

eventual consistency

Publish event

Subscribe to event

Message Channel

ACID BASE

[J Basic Availability
1 Soft-state

1 Atomic
[1 Consistent
[Isolated
[J Durable

[0 Eventual Consistency

As your system becomes more distributed,
prefer BASE to ACID...

.because CAP Theorem

www.julianbrowne.com/article/viewer/brewers-cap-theorem
Formal proof: http://Ipd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf

http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf

Prefer Choreography to Orchestration

2 6 8
AS
QD packof

enterprise architects

Recause C.omwaj’s Law'

traditional SOA /
ESB pattern

Standardize on integration, not platform

.but dont g0 crazy

OREILLY"

Building ‘ ‘
Microservices

\\\\\\\\\ 5

Have one, two or maybe three
ways of integrating, not 20.

OREILLY

Building ‘ ‘
Microservices

NNNNNNNN

% Pick some sensible conventions,
‘ and stick with them.

hexagonal architecture

Adapter Adapter

Adapter
Adapter

http://alistair.cockburn.us/Hexagonal+architecture

explicit abou
coupling

engineering
safety nets

a®®

s
-

v
¥
h
t

J
N forces coarser-
undisciplined coupling = mess grained coupling

coupling dynamics become integration issues

microservice architectures promote coupling from
application to integration architecture.

microservice architectures promote coupling from
application to integration architecture.

» Pros:

W explicit about coupling dynamics

W forces coarser-grained coupling points
» Cons:
> undisciplined coupling becomes a mess

W transaction boundaries become an
architectural issue

the monolith backlash?

- application databases

h - single database

return to the monolith?

Components are units of software
that can be independently
replaced and upgraded

Libraries run within a single
process, communicating
through language function
call mechanisms

Component

Libraries and Services are
two forms of component

Library

Service

= 5

Services run in separate processes,
communicating with networking
mechanisms such as HTTP or TCP/IP

[[

partitioning by existing coupling

maturity

you MUST BE
THIS TALL

TO HIT YOUR HEAD
ON THIS SIGN

Cyanide and Happiness © Explosm.net

T‘/@.s&@.rclav’s besk
Pra&&&e Ls Fomorrow'’s
am&-wpaﬁéerm

We inadvertently build
architectures to solve
outdated problems.

ThoughtWorks:

3. EVOLVE YOUR ARCHITECTURE

all the things to consider

Network

—
)

~’

Security

° o

Devices/Hardware
— 0"
& - ‘ 31
Usability

architect for evolvability

O New Relic.

Your Company v Support Logout
o¥ arpucanons [l Your Company ¥ Last 12 hours ~ @ 251. 22834 153m 9444, ©
» End user
App server Overview Web pages Browsers Global Unted Stales

Browser page load tme Apdex score @

A INCIDENTS

> NOTES
| EMBEDDED
CHARTS

Page views (ppm)
CUSTOM VIEWS

-Mnu().mrq Wab Appicaton D it -wﬂﬁax‘u\g

Page Renderng

O =t

Compare with last woek

Worldwide Apdex — Worldwide response times — Recent events a

- - Al o= A @
. ‘»\ ’
) s « Today, 15:55:44
’ f T, = Today, 70847
=5 '

& Today 65514

Ursded Statens Urited Kingdom

m Caridn s Ausraia

& Today, 65034

Home Privacy Terms of service FAQ Docs Suppon m Kioak mode

http://tutorials.jumpstartlab.com/images/elevate/newrelic_snapshot.jpg

http://tutorials.jumpstartlab.com/images/elevate/newrelic_snapshot.jpg

architect for testability

conway'’s law

B

m

- —————————————————— =
.-

... organised around capabilities
Because Conway's Law

Cross-functional teams...

1. Conway's Law Is TH

AW

2. Keep things small

3.

—volve your architecture

“hope is not a design method”

- Michael Nygard

if you fail to design for
production your life will be filled
with “excitement”

- Michael Nygard

THANK YOU!

@rachellaycock

Thought\Works

Resources

Books:

* Continuous Delivery - Jez Humble, Dave Farley

* Working Effectively with Legacy Code - Michael Feathers
* Release It - Michael Nygard

® Domain Driven Design - Eric Evans

Articles/Blogs:

* Branch by Abstraction - Jez Humble:

http://continuousdelivery.com/201 1/05/make-large-scale-changes-incrementally-with-branch-by-abstraction/

* Branch by Abstraction - Paul Hammant:

http://paulhammant.com/blog/branch_by abstraction.html/

* Feature Toggles - Martin Fowler: http://martinfowler.com/bliki/FeatureToggle.html

* Evolutionary Architecture - Neal Ford: http://www.ibm.com/developerworks/views/java/libraryview.jsp?
search by=evolutionary+architecturetemergent+design:

* Ball of Mud: http://www.laputan.org/mud/

* Demming - http://leanandkanban.wordpress.com/201 1/07/15/demings- | 4-points/

* Coding Horror: http://www.codinghorror.com/blog/2007/1 | /the-big-ball-of-mud-and-other-architectural-
disasters.html

* Who needs an architect: http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

* Evolutionary Architecture and Emergent Design: http://www.ibm.com/developerworks/java/library/j-eaed |/
index.html

* Strangler Application: http://martinfowler.com/bliki/StranglerApplication.html

* Microservices: http://www.infog.com/presentations/Micro-Services and http://yobriefca.se/blog/2013/04/29/
micro-service-architecture/ and http://davidmorgantini.blogspot.co.uk/20 | 3/08/micro-services-what-are-micro-
services.html

http://continuousdelivery.com/2011/05/make-large-scale-changes-incrementally-with-branch-by-abstraction/
http://paulhammant.com/blog/branch_by_abstraction.html/
http://martinfowler.com/bliki/FeatureToggle.html
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=evolutionary+architecture+emergent+design:
http://www.laputan.org/mud/
http://leanandkanban.wordpress.com/2011/07/15/demings-14-points/
http://www.codinghorror.com/blog/2007/11/the-big-ball-of-mud-and-other-architectural-disasters.html
http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
http://www.ibm.com/developerworks/java/library/j-eaed1/index.html
http://martinfowler.com/bliki/StranglerApplication.html
http://www.infoq.com/presentations/Micro-Services
http://yobriefca.se/blog/2013/04/29/micro-service-architecture/
http://davidmorgantini.blogspot.co.uk/2013/08/micro-services-what-are-micro-services.html

