
Service Architectures at Scale
Lessons from Google and eBay	

Randy Shoup
@randyshoup

linkedin.com/in/randyshoup

Architecture
Evolution	

•  eBay

•  5th generation today
•  Monolithic Perl à Monolithic C++ à Java à microservices

•  Twitter
•  3rd generation today
•  Monolithic Rails à JS / Rails / Scala à microservices

•  Amazon
•  Nth generation today
•  Monolithic C++ à Java / Scala à microservices

Service Architectures
at Scale	

•  Ecosystem of Services

•  Building a Service

•  Operating a Service

•  Service Anti-Patterns

Service Architectures
at Scale	

•  Ecosystem of Services

•  Building a Service

•  Operating a Service

•  Service Anti-Patterns

Ecosystem
of Services	

•  Hundreds to thousands of
independent services

•  Many layers of dependencies,
no strict tiers

•  Graph of relationships, not a
hierarchy

C	

B	

A	
 E	

F	

G	

D	

Evolution,
not Intelligent Design	

•  No centralized, top-down design of the system

•  Variation and Natural selection
o  Create / extract new services when needed to solve a problem
o  Deprecate services when no longer used
o  Services justify their existence through usage

•  Appearance of clean layering is an emergent
property

Google
Service Layering	

•  Cloud Datastore: NoSQL service
o  Highly scalable and resilient
o  Strong transactional consistency
o  SQL-like rich query capabilities

•  Megastore: geo-scale structured
database
o  Multi-row transactions
o  Synchronous cross-datacenter replication

•  Bigtable: cluster-level structured storage
o  (row, column, timestamp) -> cell contents

•  Colossus: next-generation clustered file
system
o  Block distribution and replication

•  Borg: cluster management infrastructure
o  Task scheduling, machine assignment

Cloud
Datastore	

Megastore	

Bigtable	

Colossus	

Borg	

Architecture without an
Architect?	

•  No “Architect” title / role

•  (+) No central approval for technology decisions
o  Most technology decisions made locally instead of globally
o  Better decisions in the field

•  (-) eBay Architecture Review Board
o  Central approval body for large-scale projects
o  Usually far too late in the process to be valuable
o  Experienced engineers saying “no” after the fact vs. encoding knowledge

in a reusable library, tool, or service

Standardization	

•  Standardized communication

o  Network protocols
o  Data formats
o  Interface schema / specification

•  Standardized infrastructure
o  Source control
o  Configuration management
o  Cluster management
o  Monitoring, alerting, diagnosing, etc.

Standards become standards by
being better than the alternatives!

“Enforcing”
Standardization	

•  Encouraged via

o  Libraries
o  Support in underlying services
o  Code reviews
o  Searchable code

The easiest way to encourage best
practices is with *code*!

Make it really easy to do the right
thing, and harder to do the wrong
thing!

Service
Independence	

•  No standardization of service internals

o  Programming languages
o  Frameworks
o  Persistence mechanisms

In a mature ecosystem of services,
we standardize the arcs of the
graph, not the nodes!

Creating
New Services	

•  Spinning out a new service
o  Almost always built for particular use-case first
o  If successful and appropriate, form a team and generalize for multiple

use-cases

•  Pragmatism wins

•  Examples
o  Google File System
o  Bigtable
o  Megastore
o  Google App Engine
o  Gmail

Deprecating
Old Services	

•  What if a service is a failure?
o  Repurpose technologies for other uses
o  Redeploy people to other teams

•  Examples
o  Google Wave -> Google Apps
o  Multiple generations of core services

“Every service at Google is either
deprecated or not ready yet.”

 -- Google engineering proverb

Service Architectures
at Scale	

•  Ecosystem of Services

•  Building a Service

•  Operating a Service

•  Service Anti-Patterns

Characteristics of an
Effective Service	

•  Single-purpose
•  Simple, well-defined interface
•  Modular and independent
•  Isolated persistence (!)

A	

C	
 D	
 E	

B	

Goals of a
Service Owner	

•  Meet the needs of my clients …
•  Functionality
•  Quality
•  Performance
•  Stability and reliability
•  Constant improvement over time

•  … at minimum cost and effort
•  Leverage common tools and infrastructure
•  Leverage other services
•  Automate building, deploying, and operating my service
•  Optimize for efficient use of resources

Responsibilities of a
Service Owner	

•  End-to-end Ownership
o  Team owns service from design to deployment to retirement
o  No separate maintenance or sustaining engineering team
o  DevOps philosophy of “You build it, you run it”

•  Autonomy and Accountability

o  Freedom to choose technology, methodology, working environment
o  Responsibility for the results of those choices

Service as
Bounded Context	

•  Primary focus on my service
o  Clients which depend on my service
o  Services which my service depends on
o  Cognitive load is very bounded

•  Very little worry about

o  The complete ecosystem
o  The underlying infrastructure

•  è Small, nimble service teams

Service	

Client
A	

Client
B	

Client
C	

Service-­‐‑Service
Relationships	

•  Vendor – Customer Relationship
o  Friendly and cooperative, but structured
o  Clear ownership and division of responsibility
o  Customer can choose to use service or not (!)

•  Service-Level Agreement (SLA)
o  Promise of service levels by the provider
o  Customer needs to be able to rely on the service, like a utility

Service-­‐‑Service
Relationships	

•  Charging and Cost Allocation
o  Charge customers for *usage* of the service
o  Aligns economic incentives of customer and provider
o  Motivates both sides to optimize for efficiency
o  (+) Pre- / post-allocation at Google

Maintaining
Service Quality	

•  Small incremental changes
o  Easy to reason about and understand
o  Risk of code change is nonlinear in the size of the change
o  (-) Initial memcache service submission

•  Solid Development Practices
o  Code reviews before submission
o  Automated tests for everything

•  Google build and test system

o  Uses production cluster manager
o  Runs millions of tests per day in parallel
o  All acceptance tests run before code is accepted into source control

Maintaining
Interface Stability	

•  Backward / forward compatibility of interfaces

o  Can *never* break your clients’ code
o  Often multiple interface versions
o  Sometimes multiple deployments

o  Majority of changes don’t impact the interface in any way

•  Explicit deprecation policy
o  Strong incentive to wean customers off old versions (!)

Service Architectures
at Scale	

•  Ecosystem of Services

•  Building a Service

•  Operating a Service

•  Service Anti-Patterns

Predictable
Performance	

•  Services at scale highly exposed to performance
variability

•  Imagine an operation …
o  1ms median latency, but 1 second latency at 99.99%ile (1 in 10,000)
o  Service using one machine à 0.01% slow
o  Service using 5,000 machines à 50% slow

•  Predictability trumps average performance
o  Low latency + inconsistent performance != low latency
o  Far easier to program to consistent performance
o  Tail latencies are *much* more important than average latencies

Google App Engine
Memcache Service	

•  Periodic “hiccups” in latency at 99.99%ile and
beyond

•  Very difficult to detect and diagnose

•  è Slab memory allocation

Service
Reliability	

•  Systems at scale highly exposed to failure
o  Software, hardware, service failures
o  Sharks and backhoes
o  Operator “oops”

•  Resilience in depth
o  Redundancy for machine / cluster / data center failures
o  Load-balancing and flow control for service invocations
o  Rapid rollback for “oops”

Service Reliability:
Deployment	

•  Incremental Deployment
o  Canary systems
o  Staged rollouts
o  Rapid rollback

•  eBay “Feature Flags”
o  Decouple code deployment from feature deployment
o  Rapidly turn on / off features without redeploying code
o  Typically deploy with feature turned off, then turn on as a separate step

Service Reliability:
Monitoring	

•  Instrumentation
o  Common monitoring service
o  Machine / instance statistics: CPU, memory, I/O
o  Request statistics: request rate, error rate, latency distribution
o  Application / service statistics
o  Downstream service invocations

•  Diagnosability
o  In-process web server with current statistics
o  Distributed tracing of requests through multiple service invocations

You can have too much alerting,
but you can never have too much
monitoring!

Service Architectures
at Scale	

•  Ecosystem of Services

•  Building a Service

•  Operating a Service

•  Service Anti-Patterns

Service
Anti-­‐‑PaQerns	

•  The “Mega-Service”
o  Overbroad area of responsibility is difficult to reason about, change
o  Leads to more upstream / downstream dependencies

•  Shared persistence
o  Breaks encapsulation, encourages “backdoor” interface violations
o  Unhealthy and near-invisible coupling of services
o  (-) Initial eBay SOA efforts

Thank You!	

•  @randyshoup

•  linkedin.com/in/randyshoup

•  Slides will be at slideshare.net/randyshoup

