
QCon London 2016
An Introduction to Property Based Testing

Aaron Bedra
Chief Security Officer, Eligible
@abedra

Why do we test?

• To better understand what we are building

• To help us think deeper about what we are building

• To ensure the correctness of what we are building

• To help us explore our design*

• To explain to others how our code should work

How do we test?

• With compilers (type systems, static analysis, etc)

• Manual testing

• X-Unit style tests

• Property/generative based tests

• Formal modeling

How do we test?

• With compilers (type systems, static analysis, etc)

• Manual testing

• X-Unit style tests

• Property/generative based tests

• Formal modeling

What is it?

An abstraction

Property based testing eliminates
the guess work on value and
order of operations testing

Magic numbers

Instead of specifying
how you specify what

Testing over time

When we start our test
suite, things are usually

easy to understand

public class Basic {
 public static Integer calculate(Integer x, Integer y) {
 return x + y;
 }
}

public class BasicTest {
 @Test
 public void TestCalculate() {
 assertEquals(Integer.valueOf(5), Basic.calculate(3, 2));
 }
}

What other tests might
we write for this code?

Like all programs we
start simple

But over time things get
more complicated

What happens when our simple
calculate function grows to
include an entire domain?

Our test suite will undoubtedly
grow, but we have options to

control the growth

And also maintain
confidence in our tests

By changing our mental
model just a bit we can

cover much more ground

Let’s revisit our basic
example

public class Basic {
 public static Integer calculate(Integer x, Integer y) {
 return x + y;
 }
}

But instead of a unit test,
let’s write a property

@RunWith(JUnitQuickcheck.class)
public class BasicProperties {
 @Property public void calculateBaseAssumption(Integer x, Integer y) {
 Integer expected = x + y;
 assertEquals(expected, Basic.calculate(x, y));
 }
}

public class BasicTest {
 @Test
 public void TestCalculate() {
 assertEquals(Integer.valueOf(5), Basic.calculate(3, 2));
 }
}

@RunWith(JUnitQuickcheck.class)
public class BasicProperties {
 @Property(trials = 1000000) public void
 calculateBaseAssumption(Integer x, Integer y) {
 Integer expected = x + y;
 assertEquals(expected, Basic.calculate(x, y));
 }
}

This property isn’t much
different than the unit test

we had before it

It’s just one level of
abstraction higher

Let’s add a constraint to
our calculator

Let’s say that the output
cannot be negative

public class Basic {
 public static Integer calculate(Integer x, Integer y) {
 Integer total = x + y;
 if (total < 0) {
 return 0;
 } else {
 return total;
 }
 }
}

java.lang.AssertionError: Property calculateBaseAssumption falsified for args
shrunken to [0, -679447654]

Shrinking

@RunWith(JUnitQuickcheck.class)
public class BasicProperties {
 @Property public void calculateBaseAssumption(Integer x, Integer y) {
 Integer expected = x + y;
 assertEquals(expected, Basic.calculate(x, y));
 }
}

public class Basic {
 public static Integer calculate(Integer x, Integer y) {
 Integer total = x + y;
 if (total < 0) {
 return 0;
 } else {
 return total;
 }
 }
}

Now we can be more
specific with our property

@RunWith(JUnitQuickcheck.class)
public class BasicProperties {
 @Property public void calculateBaseAssumption(Integer x, Integer y) {
 assumeThat(x, greaterThan(0));
 assumeThat(y, greaterThan(0));
 assertThat(Basic.calculate(x, y), is(greaterThan(0)));
 }
}

java.lang.AssertionError: Property calculateBaseAssumption falsified for args shrunken to [647853159,
1499681379]

We could keep going from
here but let’s dive into
some of the concepts

Refactoring

This is one of my favorite
use cases for invoking
property based testing

Legacy code becomes
the model

It’s incredibly powerful

It ensures you have
exact feature parity

Even for unintended
features!

Generators

You can use them for all
kinds of things

Scenario

Every route in your web
application

You could define
generators based on your

routes

And create valid and
invalid inputs for every

endpoint

You could run the
generators on every test

Or save the output of the
generation for faster

execution

Saved execution of
generators can even bring
you to simulation testing

There are tons of property
based testing libraries

available

But this is a talk in a
functional language track

So let’s have some fun

Let’s pretend we have
some legacy code

Written in C

And we want to test it to
make sure it actually

works

But there are no
quickcheck libraries

available*

Warning! The crypto you are
about to see should not be

attempted at work

Caesar’s Cipher

Let’s start with our
implementation

#include <stdlib.h>
#include <string.h>
#include <ctype.h>

char *caesar(int shift, char *input)
{
 char *output = malloc(strlen(input));
 memset(output, '\0', strlen(input));

 for (int x = 0; x < strlen(input); x++) {
 if (isalpha(input[x])) {
 int c = toupper(input[x]);
 c = (((c - 65) + shift) % 26) + 65;
 output[x] = c;
 } else {
 output[x] = input[x];
 }
 }

 return output;
}

Next we create a new
implementation to test

against

caesar :: Int -> String -> String
caesar k = map f
 where
 f c
 | inRange ('A', 'Z') c = chr $ ord 'A' +
 (ord c - ord 'A' + k) `mod` 26
 | otherwise = c

We now have two
functions that “should” do

the same thing

But they aren’t in the
same language

Thankfully Haskell has
good FFI support

foreign import ccall "caesar.h caesar"
 c_caesar :: CInt -> CString -> CString

native_caesar :: Int -> String -> IO String
native_caesar shift input = withCString input $ \c_str ->
 peekCString(c_caesar (fromIntegral shift) c_str)

$ stack exec ghci caesar.hs caesar.so
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling Main (caesar.hs, interpreted)
Ok, modules loaded: Main.
*Main> caesar 2 "ATTACKATDAWN"
"CVVCEMCVFCYP"
*Main> native_caesar 2 "ATTACKATDAWN"
"CVVCEMCVFCYP"

We can now execute our
C code from inside of

Haskell

We can use Haskell’s
quickcheck library to

verify our C code

First we need to write a
property

unsafeEq :: IO String -> String -> Bool
unsafeEq x y = unsafePerformIO(x) == y

genSafeChar :: Gen Char
genSafeChar = elements ['A' .. 'Z']

genSafeString :: Gen String
genSafeString = listOf genSafeChar

newtype SafeString = SafeString { unwrapSafeString :: String } deriving Show
instance Arbitrary SafeString where arbitrary = SafeString <$> genSafeString

equivalenceProperty = forAll genSafeString $ \str ->
 unsafeEq (native_caesar 2 str) (caesar 2 str)

unsafeEq :: IO String -> String -> Bool
unsafeEq x y = unsafePerformIO(x) == y

genSafeChar :: Gen Char
genSafeChar = elements ['A' .. 'Z']

genSafeString :: Gen String
genSafeString = listOf genSafeChar

newtype SafeString = SafeString { unwrapSafeString :: String } deriving Show
instance Arbitrary SafeString where arbitrary = SafeString <$> genSafeString

equivalenceProperty = forAll genSafeString $ \str ->
 unsafeEq (native_caesar 2 str) (caesar 2 str)

unsafeEq :: IO String -> String -> Bool
unsafeEq x y = unsafePerformIO(x) == y

genSafeChar :: Gen Char
genSafeChar = elements ['A' .. 'Z']

genSafeString :: Gen String
genSafeString = listOf genSafeChar

newtype SafeString = SafeString { unwrapSafeString :: String } deriving Show
instance Arbitrary SafeString where arbitrary = SafeString <$> genSafeString

equivalenceProperty = forAll genSafeString $ \str ->
 unsafeEq (native_caesar 2 str) (caesar 2 str)

unsafeEq :: IO String -> String -> Bool
unsafeEq x y = unsafePerformIO(x) == y

genSafeChar :: Gen Char
genSafeChar = elements ['A' .. 'Z']

genSafeString :: Gen String
genSafeString = listOf genSafeChar

newtype SafeString = SafeString { unwrapSafeString :: String } deriving Show
instance Arbitrary SafeString where arbitrary = SafeString <$> genSafeString

equivalenceProperty = forAll genSafeString $ \str ->
 unsafeEq (native_caesar 2 str) (caesar 2 str)

unsafeEq :: IO String -> String -> Bool
unsafeEq x y = unsafePerformIO(x) == y

genSafeChar :: Gen Char
genSafeChar = elements ['A' .. 'Z']

genSafeString :: Gen String
genSafeString = listOf genSafeChar

newtype SafeString = SafeString { unwrapSafeString :: String } deriving Show
instance Arbitrary SafeString where arbitrary = SafeString <$> genSafeString

equivalenceProperty = forAll genSafeString $ \str ->
 unsafeEq (native_caesar 2 str) (caesar 2 str)

unsafeEq :: IO String -> String -> Bool
unsafeEq x y = unsafePerformIO(x) == y

genSafeChar :: Gen Char
genSafeChar = elements ['A' .. 'Z']

genSafeString :: Gen String
genSafeString = listOf genSafeChar

newtype SafeString = SafeString { unwrapSafeString :: String } deriving Show
instance Arbitrary SafeString where arbitrary = SafeString <$> genSafeString

equivalenceProperty = forAll genSafeString $ \str ->
 unsafeEq (native_caesar 2 str) (caesar 2 str)

*Main> quickCheck equivalenceProperty
*** Failed! Falsifiable (after 20 tests):
"QYMSMCWTIXNDFDMLSL"
*Main> caesar 2 "QYMSMCWTIXNDFDMLSL"
"SAOUOEYVKZPFHFONUN"
*Main> native_caesar 2 "QYMSMCWTIXNDFDMLSL"
“SAOUOEYVKZPFHFONUN/Users/abedra/x“

#include <stdlib.h>
#include <string.h>
#include <ctype.h>

char *caesar(int shift, char *input)
{
 char *output = malloc(strlen(input));
 memset(output, '\0', strlen(input));

 for (int x = 0; x < strlen(input); x++) {
 if (isalpha(input[x])) {
 int c = toupper(input[x]);
 c = (((c - 65) + shift) % 26) + 65;
 output[x] = c;
 } else {
 output[x] = input[x];
 }
 }

 return output;
}

We’ve found a memory
handling issue in our C

code!

In reality there are more
issues with this code, but our
issue was quickly exposed

And easily reproduced

Wrapping up

Not all testing is created
equal

You should use as many
different testing

techniques as you need

Remember to think about
the limits of your tools

And use tools that help
you achieve your results

more effectively

And more efficiently

Questions?

