Rachel Reese @rachelreese rachelree.se
Jet Technology | @JetTechnology | tech.jet.com

Why do you need chaos testing?

The world is naturally chaotic

But do we need more testing?

Random

Acceptance g Localization Usability

Regression

- Performance -y

Integration Security

You've already tested all your
components in multiple ways.

Electronics

TelevisionsL aptopsHeadphones
Need help?

Ask the Jet Heads.

1 (855) 538 4323
help@et.com

Social

(et our apps

F Avallable on thio GET IT DN

¢ App Stﬂr:E > Google play

Join the world of Jet

Enter your email address

Join Now

It's super important to test the interactions in your
environment

,‘ Postedlaty
&% [BAUIROO'COM

Jet? Jet who?

Taking on Amazon!

Q search Q 07302

Shop Anywhere « FREE SHIPPING OVER $35 + FREE RETURNS

Start your cart. Build your savings.

E 3 Build a Smart Cart

Launched July 22

Both Apple & Android named our
app as one of their tops for 2015

Over 20k orders per day
Over 10.5 million SKUs
#4 marketplace worldwide

700 microservices
® O

We're hiring!

http://jet.com/about-us/working-at-jet

React Node Angular @ SAS

Storm SE Iea:rg(;] Xamarin Microservices Consul Kafka P DW

: . Apache Apache
Splunk Redis SQL Puppet Jenkins Hive Tez

Microservices at Jet

Microservices

An application of the single responsibility principle at the service level.

(1 b))
A class should have one, and only one, reason to change.

Has an input, produces an output.

. Easy scalability

B en ef|tS Independent releasability

. More even distribution of complexity

What Is chaos engineering?

It's just wreaking havoc with your code
for fun, rnght?

Jey)

Chaos Engineering is...

Controlled experiments on a distributed system
that help you build confidence in the system'’s
ablility to tolerate the inevitable failures.

Principles of Chaos Engineering

1.

Define “normal’

Assume "normal” will continue in both a control group
and an experimental group.

Introduce chaos: servers that crash, hard drives that
malfunction, network connections that are severed, etc.

Look for a difference in behavior between the control
group and the experimental group.

Going farther

Build a Hypothesis around Normal Behavior
Vary Real-world Events

Run Experiments in Production

Automate Experiments to Run Continuously

From http://principlesofchaos.org/

http://principlesofchaos.org/

Benefits of chaos engineering

Benefits of chaos engineering

Self service

ﬂ .?‘*»,: ’ ~-' -

Current examples of chaos engineering

Maybe you meant Netflix's Chaos Monkey?

‘ what is chaos testing|

S
chaos monkey wiki
chaos gorilla
chaos monkey openstack
chaos monkey download
what is chaos testing
All News Videos Images Shopping More v Search tools

About 30,700,000 results (0.87 seconds)

What is Chaos Monkey? - Definition from Whatls.com
whatis.techtarget.com» ... » Software applications v

Chaos Monkey is a software tool that was developed by Netflix engineers to test the
resiliency and recoverability of their Amazon Web Services (AWS).

S

How Is Jet different?

We're not testing in prod (yet).

SQL restarts & geo-replication

Start
Checks the source db for write access
Renames db on destination server (to create a new one)

Creates a geo-replication in the destination region

Stop
Shuts down cloud services writing to source db

Sets source db as read-only
Ends continuous copy
Allows writes to secondary db

Azure & F#

Why F#?

What FP means to us

Use data in = data out
transformations

Think about mapping
Inputs to outputs.

Prefer immutability Look at problems

: recursivel
Avoid state changes, y

side effects, and Consider successively
mutable data smaller chunks of the
same problem

Treat functions as
unit of work

Higher-order functions

14

The F# solution offers us an order of magnitude
Increase In productivity and allows one developer to

perform the work [of] a team of dedicated
developers...

Yan Cul
Lead Server Engineer, Gamesys

)J

Concise and powerful code
C#

public abstract class Transport{ }

public abstract class Car : Transport {
public string Make { get; private set; }
public string Model { get; private set; }
public Car (string make, string model) {
this.Make = make;
this.Model = model,

}

public abstract class Bus : Transport {
public int Route { get; private set; }
public Bus (int route) {
this.Route = route;
}

}

public class Bicycle: Transport {
public Bicycle() {
}

F#

type Transport =
| Car of Make:string * Model:string
| Bus of Route:int
| Bicycle

Trivial to pattern match on!

Name Description Example

Constant pattern Any numeric, character, or string literal, an enumeration constant, or a defined literal identifier 1.8, "test", 38, Color.Red
Identifier pattern A case value of a discriminated union, an exception label, or an active pattern case Some(x)
Failure(msg)
@ Variable pattern identifier a
C as pattern pattern as identifier (a, b) as tuplel
H
s OR pattern pattern1 | pattern2 ([h]1 | [h; _D)
U AND pattern pattern1 & pattern2 (a, b) & (_, "test")
.Ic_ﬁ' Cons pattern identifier :: list-identifier h:: t
E List pattern [pattern_T; ...; pattern_n] [a; b; ¢]
Array pattern [| pattern_T; ..; pattern_n | [l a; b; ¢ |]
E Parenthesized pattern (pattern’) (a)
m Tuple pattern (pattern_1, ..., pattern_n’) (a, b)
ﬂ Record pattern { identifier1 = pattern_T; ... ; identifier n = pattern_n'} { Name = name; }
m Wildcard pattern _ _
Q Pattern together with type annotation pattern : type a : int
:H: Type test pattern :? type [as identifier] :? System.DateTime as dt
u Null pattern null null

Concise and powerful code
C#

{}

Make { get;)
Model { ; }
(make, model) {
.Make = make;
.Model = model;

Route { . : ;)
(int route) {
.Route = route;

() {

F#

type Transport =
| Car of Make:string * Model:string
| Bus of Route:int
| Bicycle
| Train of Line:int

let getThereVia (transport:Transport) =
match transport with
| Car (make,model) -> ...
| Bus route -> ...
| Bicycle -> ...

Warning FS0025: Incomplete pattern
matches on this expression. For example,

the value 'Train' may indicate a case not
covered by the pattern(s)

Units of Measure

Mystery of Orbiter Crash Solved

By Kathy Sawyer
Washington Post Staff Writer
Friday, October 1, 1999; Page Al

NASA's Mars Climate Orbiter was
lost 1n space last week because
engineers failed to make a simple
conversion from English units to
metric, an embarrassing lapse that
sent the $125 million craft fatally
close to the Martian surface,
investigators said yesterday.

TickSpec — an F# project

TickSpec.StepDefinstions
\ TickSpec Feature

TickSpec EventAttribute

TickSpec.Action

TickSpec.Scenario

TickSpec.StepType

TickSpec LineParser

N\

TickSpec FeatureParser

s
TickSpec BlockParser TickSpec StepException

TickSpec.LineSource

=S\

TickSpec.ThepAttribute
TickSpec. WhenAttribute

TickSpec.GivenAttribute

\

—

TickSpec StepAttritute

TickSpec.Table

TickSpec.ServiceProvider

TickSpec FeatureSource
TickSpec.ScenarioSource

Thanks to Scott Wlaschin for his post, Cycles and modularity in the wild

http://fsharpforfunandprofit.com/posts/cycles-and-modularity-in-the-wild/

SpecFlow— a comparable C# project

Thanks to Scott Wlaschin for his post, Cycles and modularity in the wild

http://fsharpforfunandprofit.com/posts/cycles-and-modularity-in-the-wild/

Chaos code!

What do our services look like?

Define inputs
& outputs

Define how input
transforms to output

Define what to do
with output

Read events,
handle, & interpret

type Input =
| Product of Product

type Output =
| ProductPriceNile of Product * decimal
| ProductPriceCheckFailed of PriceCheckFailed

let handle (input:Input) =

async {
return Some(ProductPriceNile({Sku="343434"; ProductId = 17; ProductDescription = "My
amazing product"; CostPer=1.96M}, 3.96M))

}

let interpret id output =

match output with

| Some (Output.ProductPriceNile (e, price)) -> async {()} // write to event store
| Some (Output.ProductPriceCheckFailed e) -> async {()} // log failure

| None -> async.Return ()

let consume|= EventStoreQueue.consume [decodeT Input.Product)|handle interpret

Jey)

Our code!

let selectRandomInstance compute hostedService = async {
try
let! details = getHostedServiceDetails compute hostedService.ServiceName
let deployment = getProductionDeployment details

let instance = deployment.RoleInstances
|> Seq.toArray
| > randomPick

return details.ServiceName, deployment.Name, instance
with e ->

log.error e

reraise e

Our code!

let restartRandomInstance compute hostedService = async {
try

let! serviceName, deploymentId, rolelInstance =
selectRandomInstance compute hostedService

match roleInstance.PowerState with

| RoleInstancePowerState.Stopped ->
log.info

serviceName roleInstance.InstanceName

| -
do! restartInstance compute serviceName deploymentId roleInstance.InstanceName
with e ->
log.error e.Message

Our code!

compute
> getHostedServices
> Seqg.filter ignorelist
knuthShuffle
Seqg.distinctBy (fun a -> a.ServiceName)
Seg.map (fun hostedService -> async {
try
return! restartRandomInstance compute hostedService
with
e -> log.warn "failed: service=%s . %A" hostedService.ServiceName e
return ()

v Vv

\'4

|> Async.ParallelIgnore 1
| > Async.RunSynchronously

Has it helped?

Elasticsearch restart

Additional chaos finds

Redis
Checkpointing

Electronics

TelevisionsL aptopsHeadphones
Need help?

Ask the Jet Heads.

1 (855) 538 4323
help@et.com

Social

(et our apps

F Avallable on thio GET IT DN

¢ App Stﬂr:E > Google play

Join the world of Jet

Enter your email address

Join Now

If availability matters, you should be
testing for it.

Azure + F# + Chaos = <3

Rachel Reese @rachelreese rachelree.se
Jet Technology | @JetTechnology | tech.jet.com
Nora Jones @nora |s

