
Chaos Engineering at Jet.com

Rachel Reese | @rachelreese | rachelree.se

Jet Technology | @JetTechnology | tech.jet.com

Why do you need chaos testing?

The world is naturally chaotic

But do we need more testing?

Unit Sanity Random Continuous

UsabilityA/BLocalizationAcceptance

Regression Performance Integration Security

You’ve already tested all your

components in multiple ways.

It’s super important to test the interactions in your

environment

Jet? Jet who?

Taking on Amazon!

Launched July 22

• Both Apple & Android named our
app as one of their tops for 2015

• Over 20k orders per day

• Over 10.5 million SKUs

• #4 marketplace worldwide

• 700 microservices

We’re hiring!
http://jet.com/about-us/working-at-jet

Azure Web sites
Cloud

services VMs Service bus
queues

Services
bus topics

Blob storage

Table
storage Queues Hadoop DNS Active

directory
SQL Azure R

F# Paket FSharp.Data Chessie Unquote SQLProvider Python

Deedle
FAK

E
FSharp.Async React Node Angular SAS

Storm
Elastic
Search

Xamarin Microservices Consul Kafka PDW

Splunk Redis SQL Puppet Jenkins
Apache

Hive
Apache

Tez

Microservices at Jet

Microservices

• An application of the single responsibility principle at the service level.

• Has an input, produces an output.

Easy scalability

Independent releasability

More even distribution of complexity
Benefits

“A class should have one, and only one, reason to change.”

What is chaos engineering?

It’s just wreaking havoc with your code

for fun, right?

Chaos Engineering is…

Controlled experiments on a distributed system
that help you build confidence in the system’s
ability to tolerate the inevitable failures.

Principles of Chaos Engineering

1. Define “normal”

2. Assume ”normal” will continue in both a control group
and an experimental group.

3. Introduce chaos: servers that crash, hard drives that
malfunction, network connections that are severed, etc.

4. Look for a difference in behavior between the control
group and the experimental group.

Going farther

Build a Hypothesis around Normal Behavior

Vary Real-world Events

Run Experiments in Production

Automate Experiments to Run Continuously

From http://principlesofchaos.org/

http://principlesofchaos.org/

Benefits of chaos engineering

Benefits of chaos engineering

You're awake Design for failure

Healthy systems Self service

Current examples of chaos engineering

Maybe you meant Netflix’s Chaos Monkey?

How is Jet different?

We’re not testing in prod (yet).

SQL restarts & geo-replication

Start

- Checks the source db for write access

- Renames db on destination server (to create a new one)

- Creates a geo-replication in the destination region

Stop

- Shuts down cloud services writing to source db

- Sets source db as read-only

- Ends continuous copy

- Allows writes to secondary db

Azure & F#

Why F#?

What FP means to us

Prefer immutability

Avoid state changes,
side effects, and
mutable data

Use data in data out
transformations

Think about mapping
inputs to outputs.

Look at problems
recursively

Consider successively
smaller chunks of the
same problem

Treat functions as
unit of work

Higher-order functions

The F# solution offers us an order of magnitude

increase in productivity and allows one developer to

perform the work [of] a team of dedicated

developers…

Yan Cui

Lead Server Engineer, Gamesys

“

“ “

Concise and powerful code

public abstract class Transport{ }

public abstract class Car : Transport {
public string Make { get; private set; }
public string Model { get; private set; }
public Car (string make, string model) {

this.Make = make;
this.Model = model;

}
}

public abstract class Bus : Transport {
public int Route { get; private set; }
public Bus (int route) {

this.Route = route;
}

}

public class Bicycle: Transport {
public Bicycle() {
}

}

type Transport =
| Car of Make:string * Model:string
| Bus of Route:int
| Bicycle

C# F#

Trivial to pattern match on!

F
#

 p
a

tt
e
rn

 m
a

tc
h

in
g

C#

Concise and powerful code

public abstract class Transport{ }

public abstract class Car : Transport {
public string Make { get; private set; }
public string Model { get; private set; }
public Car (string make, string model) {

this.Make = make;
this.Model = model;

}
}

public abstract class Bus : Transport {
public int Route { get; private set; }
public Bus (int route) {

this.Route = route;
}

}

public class Bicycle: Transport {
public Bicycle() {
}

}

type Transport =
| Car of Make:string * Model:string
| Bus of Route:int
| Bicycle
| Train of Line:int

let getThereVia (transport:Transport) =
match transport with

| Car (make,model) -> ...
| Bus route -> ...
| Bicycle -> ...

Warning FS0025: Incomplete pattern
matches on this expression. For example,
the value ’Train' may indicate a case not
covered by the pattern(s)

C# F#

Units of Measure

TickSpec – an F# project

Thanks to Scott Wlaschin for his post, Cycles and modularity in the wild

http://fsharpforfunandprofit.com/posts/cycles-and-modularity-in-the-wild/

SpecFlow– a comparable C# project

Thanks to Scott Wlaschin for his post, Cycles and modularity in the wild

http://fsharpforfunandprofit.com/posts/cycles-and-modularity-in-the-wild/

Chaos code!

type Input =

| Product of Product

type Output =

| ProductPriceNile of Product * decimal

| ProductPriceCheckFailed of PriceCheckFailed

let handle (input:Input) =

async {

return Some(ProductPriceNile({Sku="343434"; ProductId = 17; ProductDescription = "My
amazing product"; CostPer=1.96M}, 3.96M))

}

let interpret id output =

match output with

| Some (Output.ProductPriceNile (e, price)) -> async {()} // write to event store

| Some (Output.ProductPriceCheckFailed e) -> async {()} // log failure

| None -> async.Return ()

let consume = EventStoreQueue.consume (decodeT Input.Product) handle interpret

What do our services look like?

Define inputs

& outputs

Define how input

transforms to output

Define what to do

with output

Read events,

handle, & interpret

Our code!

let selectRandomInstance compute hostedService = async {
try

let! details = getHostedServiceDetails compute hostedService.ServiceName
let deployment = getProductionDeployment details

let instance = deployment.RoleInstances
|> Seq.toArray
|> randomPick

return details.ServiceName, deployment.Name, instance
with e ->

log.error "Failed selecting random instance\n%A" e
reraise e

}

Our code!

let restartRandomInstance compute hostedService = async {
try

let! serviceName, deploymentId, roleInstance =
selectRandomInstance compute hostedService

match roleInstance.PowerState with
| RoleInstancePowerState.Stopped ->

log.info "Service=%s Instance=%s is stopped...ignoring...”
serviceName roleInstance.InstanceName

| _ ->
do! restartInstance compute serviceName deploymentId roleInstance.InstanceName

with e ->
log.error "%s" e.Message

}

Our code!

compute
|> getHostedServices
|> Seq.filter ignoreList
|> knuthShuffle
|> Seq.distinctBy (fun a -> a.ServiceName)
|> Seq.map (fun hostedService -> async {

try
return! restartRandomInstance compute hostedService

with
e -> log.warn "failed: service=%s . %A" hostedService.ServiceName e
return ()

})
|> Async.ParallelIgnore 1
|> Async.RunSynchronously

Has it helped?

Elasticsearch restart

Additional chaos finds

- Redis

- Checkpointing

If availability matters, you should be

testing for it.

Azure + F# + Chaos = <3

Chaos Engineering at Jet.com

Rachel Reese | @rachelreese | rachelree.se

Jet Technology | @JetTechnology | tech.jet.com

Nora Jones | @nora_js

