Continuous Delivery: Benefits
Explained

Lianping Chen

Ichen@paddypower.com
@lianpingchen

The presentation represents only my own views and doesn’t necessarily reflect those of my employer.



paddyp Hwelr.coir




Offers betting/gambling services in regulated
markets, through shops, phones, Internet,
mobile apps



7 billion turnover



5000 employees



Relies heavily on an increasingly large number of
custom software applications



These applications are developed and
maintained by the Technology Department,
which employs about 500 people



WWI-" T

1
i

2
— A o e

=Ty -ﬂ-“-_-“

TR g, _spo.

ST e o O Wi s e




The world's largest public online betting and
gaming company with combined revenues of
more than £1.1bn



The 44t |largest company on the London Stock
Exchange



About four years ago ...



Many releases were a “scary” experience.



Priority 1 incidents



The delivery activities weren’t efficient. Just
setting up the testing environment could take
three weeks.



Each application typically had fewer than six
releases a year.



This release model artificially delayed features
completed early in the release cycle.



The value these features could generate was
lost.



Early feedback on them wasn’t available.



DevelgPmenT | REAPY R ]

’-

ACCERTRMCE

—

DEV I, PROGRESS REVIELL/

——







CONTINUOUS
DELIVERY

JEz HUMBLE
DAvVID FARLEY

Foreword by Martin Fowler




Does it really work?



To what extent?



What are the actual benefits that have been
realized?



“There is more to Continuous Delivery than
wiring together Jenkins instances and buying a
new automated deployment tool.”



What are those more things?



Reliable Releases



The risks associated with a release have
significantly decreased



No stress on the release day anymore. That day
becomes just another normal day.



Deploy at peak times



Deployment automation



According to Gartner, "Through 2015, 80% of
outages impacting mission-critical services will
be caused by people and process issues”

Source: Colville, R, and Spafford, G. Configuration Management for Virtual and
Cloud Infrastructures



Aligning testing and production environments



Small batches



Improved Productivity &
Efficiency



20%

Time saving on setting up and fixing test
environments



Release

Saved time on release: A few days’ effort by operations
engineers -> A click of a button by a developer



Saved effort (and frustration) on
troubleshooting and fixing issues caused by the
old release practice



Collaborative culture and organization structure






Aligning testing and production environments



Accelerated Time to Market



Release frequency: once every one to six
months -> at lease once a week, sometimes
multiple times a day



Several months

Cycle time: from a user
story’s conception to
production

2-5 days



Deliver the business value inherent in new
software releases to our customers more quickly



Company X: R&D is 10% of revenue, e.g. 100MS for a
1BS product

New product development cycle: 12 months

Option 1: improve efficiency of development by 10%
=> 10 MS reduction in development cost

Option 2: reduce development cycle by 10%

=> 100MS add to top line revenue (product
starts to sell 1.2 months earlier)

Cycle time reduction outperforms efficiency
Improvement

Credit: Jan Bosch



Get fast feedback



Break a big feature into smaller ones that can be
finished in a short time (e.g., within a week)



Architecture: modifiability: allows adding
features in small increments



Architecture: deployability: a level of
deployability that is acceptable for traditional
multi-month release model may not be
acceptable for CD




Architecture: testability: testing is not only
about writing tests but also about design



What's special compared to architecting in a
traditional context?



Increased priority: When working in a CD
context, we can't trade these ASRs off lightly
anymore.

ASRs (Architecturally Significant Requirements): L. Chen, M. Ali Babar, and B. Nuseibeh, "Characterizing
Architecturally Significant Requirements," Software, IEEE, vol. 30, pp. 38-45, 2013.



Increased degree: In a CD context, a higher
degree of requirement for these ASRs is often
needed



Automated tests



Automated deployment, a click of a button



60

50

40

30

20

10

[ releases per-month

Jan-14

Feb-14

Mar-14

Apr-14

May-14

Jun-14

Jul-14

Aug-14

Sep-14

Oct-14

Nov-14

Dec-14

Jan-15

Feb-15




Optimize process



Improved Product Quality



14

12

10

Customer Found Bugs

Before

After

Over 90%
Improvement



Approximately 30 percent of the workforce was
fixing bugs.



Now, usually nobody is working on customer-
found bugs. Bugs are so rare that the teams no
longer need a bug-tracking system.



Any piece of code has to be accompanied by
tests. TDD/ATDD/BDD



Eliminate flaky (non-deterministic) tests



Fixing any failing test takes precedence over any
other work



Most teams choose to fail the build if the test
coverage is below 95%



Tests are treated as first class citizen: they are
developed and reviewed using the same quality
standard as code



L

Overview Components Issues Settingsv More~

Main Dashboard

Unit Tests Coverage Debt
97.4% 0
Line Coverage
977% 0 Blocker
@ Critical
Condition Coverage ® Mai
96.2% et
© Minor
) ) © Info
Lines Of Code Files
3,858 a 108 »
, ) _ Duplications
Java Directories  Lines o
22 49232  0.0%

) Lines Blocks
Functions 0 0
348 A
Classes  Statements
108 a 1,506 A
Accessors
30

o O O O o

Files

0

|ssues

0

Version 1.0.689 / February 29 2016 11:40 AM

Time changes... v  Configure widgets

Complexity
838 a

/Function /Class

24 7.8

/File
7.8

150
100
50

1 2 4 6 8§ 10 12
(®)Functions ()Files

Most Violated Rules = Any severity v More

No result

February 29 2016 @ Lines of code: 3,858
1.0.689

SeptembddctobeNovembBecember 2016 February



] F_‘J Version 1.0.680 / August 21 2015 7:28 PM

Overview Components Issues More~

Main Dashboard Time changes... v
Unit Tests Coverage Unit Test Success Debt Issues Complexity
99.9% 100.0% 0 0 435
Line Coverage Failures Errors Tests /Function  /Class
99.9% 0 0 671 O Blocker 0 15 5.0
@ Critical 0
Condition Coverage Execution Time ® Maij /File
100.0% 11.1 sec a aer 2 5.1
© Minor 0
. . © Info 0
Lines Of Code Files s
3,195 86 .
) , . Duplications 0
Java Directories  Lines o 1 2 4 6 8 10 12
120 4394 00 70 (®)Functions (_)Files
) Lines Blocks Files
Functions 0 0 0
Most Violated Rules Any severity v More
272
No result
Classes Statements
87 727
Accessors August 192015 @ Lines of code: 3,195
2

1
Thu 20 12PM Fri 21 12PM



Overview

Main Dashboard

Unit Tests Coverage

98.7%

Line Coverage

98.9%

Condition Coverage

97.5%

Lines Of Code
6,481

Java

Functions

637

Classes Statements

238 1,441

Accessors

6

Components

Issues  Settings v

Files

232

Directories  Lines
154 8,579

More ¥

Debt

0

© Blocker
© Critical
@ Major
@ Minor
@ Info

Duplications
0.0%

Lines Blocks

0 0

o O O O o

Files

0

|ssues

0

Version 1.0.488 / February 25 2016 11:27 AM

Time changes... v  Configure widgets

Complexity
860

/Function /Class

1.6 3.6

[File
3.7

400

200

1 2 4 6 8 10 12
(®)Functions ()Files

Most Violated Rules Any severity v More

No result

October 132015 @ Lines of code: 6,481
1.0.478

} lll 1 ? I T T 1 T II ll!
septembeBOctobeNovembdecember 2016 February




& F -

Overview Components Issues More~

Main Dashboard

Unit Tests Coverage
95.0%

Line Coverage

95.7%

Condition Coverage

89.9%

Lines Of Code Files

17,985 a 436 a

Java Directories  Lines

112 23,460 a

Functions
1,106 a

Classes  Statements

4422 5,485 a

Accessors

1,140

Debt

1d 6h A

O Blocker
@ Critical
@ Major
© Minor
© Info

Duplications
2.3%

Lines Blocks

5302 35=a

Issues
16 a
0
11
A
0
Files
24 =

Version 0.1.1180 / January 19 2016 4:13 PM

Time changes... v

Complexity
2,120 A

/Function /Class

1.9 4.8

/File
49

800
600
400
200

1 2 4 6 8 10 12
(®) Functions ()Files

Most Violated Rules  Any severity - More
@ Method Length 11 I
@ Anon Inner Length 2
@ Reliance on default encoding 1 1
@ Ncss Method Count 1 0
@ Unused Private Field 1l

November 12 2015 ® Lines of code: 17,618
0.1.1172

0>
2ty

| - L . L
September October November December 2016




Spending time on writing tests and coming up
with elegant design is actually a better option
than spending time on fixing lots of bugs.



Building the Right Product



Features / Functions Used in a Typical System
Often / Always Rarely / Never
Used: 20% Used: 64%

Sometimes Rarely 19%

Always 7%
Never 45%

| Standish Group Study Reported at XP2002 by Jim Johnson, Chairman I




If I'd asked my customers
what they wanted, they’'d have
said a faster horse

Henry T. Ford



You can't just ask customers
what they want and then try to
give that to them. By the time

you get it built, they'll want

something new.

Steve Jobs



Customers don’t know what
they want. It's very hard to
envision the solution you want
without actually seeing it.

Marty Cagan



Not Requirements; Hypotheses



The company running the most experiments against
the lowest cost per experiment wins

Usage and other data

Decide on new
hypotheses

Decisions should be based on DATA, not opinions

Credit: Jan Bosch



Previously, teams might have worked on
features that weren’t useful but didn’t discover
that until after the next big release. By that
time, they had already spent months of effort
on those features.



Frequent releases let the application
development teams obtain user feedback more
quickly. This lets them work on only the useful
features. If they find that a feature isn’t useful,
they spend no further effort on it.



Users feedback informs formulation of new
hypotheses



Fast and continuous gathering of user feedback



Y — T — — — = e —_
f_ ~ ~  BASEStesting™ ~ -7 S
@ 7 Interviews \ 7 Crowd-funding success \
8 [ Observations & ) ]
) \ Theater sessions ~" C1 I} g‘% Online ads y
rBD o ELIETE o In-product surveys -
S ~ _Questionaires — S~ _ _ _ -
— -— T = ~— - _ — T — -~
5 g N “ " Operational data ™
© / / perational data \
@
S| ! 'k
S . Prototype testing ~‘ @ @ )Y Beta testing |
= / Devel t /
N Developers as customers
=1 ~ - g 2
- - ~ _
g -7 7 T = ~ -7 T = ~
2 y “ Walk thorughs N “  Incident Reports
) \
T (@ B e
~§ \ . Customer pairing / \ o y
P N\ Social networks data P
@ ~ ~
3 ~N - . - -~ ~ - _ _ - —

Source: A. Fabijan, H. H. Olsson, and J. Bosch, "Customer Feedback and Data Collection
Techniques in Software R&D: A Literature Review," in Software Business: 6th International
Conference, ICSOB 2015, Braga, Portugal, June 10-12, 2015.



-

C
O
N
O
(O
U
)
)
O
)
-
Q
-
O
fd
)
-
@,
O
0,
>
O
—
ak
=
—




Improved
customer
satisfaction

Improved
product

quality

Source: L. Chen, "Continuous Delivery: Huge Benefits, but Challenges Too," IEEE

Software, vol. 32, 2015.

Accelerated
time to market

Building the
right product

Improved
productivity
and efficiency

Reliable
releases




However, to achieve/maximize these benefits,
we need to seriously take CD as a holistic
approach.



— Automatic promotion ---» Manual promotion

Code Acceptance Performance i@ Manual W88 p o quction
commit test test test

Increasing confidence in production readiness

An example CD pipeline. (Source: L. Chen, "Continuous Delivery: Huge Benefits, but
Challenges Too," IEEE Software, vol. 32, 2015.)




o v AW

N

10.
11.
12.
13.

Requirements as hypotheses

Break big feature into smaller ones than can be finished in
a short time (e.g., within a week)

. Architecting for CD

TDD/ATDD/BDD
Eliminate flaky (non-deterministic) tests

Fixing any failing test takes precedence over any other
work

Test automation

Tests are treated as first class citizen: they are developed
and reviewed using the same quality standard as code

Automate deployment/release

Aligning testing and production environments
Fast and continuous gathering of user feedback
Optimize process

Collaborative culture/organization structure



Continuous Delivery: Benefits
Explained

Lianping Chen

Ichen@paddypower.com
@lianpingchen

The presentation represents only my own views and doesn’t necessarily reflect those of my employer.



