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What is kernel bypass?



The standard receive path



The standard receive path



The standard receive path



The standard receive path



Kernel-bypass receive



Kernel-bypass transmit



Kernel-bypass transmit



Kernel-bypass transmit



Kernel-bypass transmit – even faster



What does all of this
cleverness achieve?



Better performance!

• Fewer CPU instructions for network operations

• Better cache locality

• Faster response (lower latency)

• Higher throughput (higher bandwidth/message rate)

• Reduced contention between threads

• Better core scaling

• Reduced latency jitter





Solarflare’s OpenOnload

• Sockets acceleration using kernel bypass

• Standard Ethernet, IP, TCP and UDP

• Standard BSD sockets API

• Binary compatible with existing applications



OpenOnload intercepts network calls



Single thread throughput and latency



UDP receive throughput (small messages)



Kernel stack OpenOnload



A much more challenging application



HAProxy performance and scaling
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Why doesn’t performance scale 
when using the kernel stack?



Better question:

How come it scales as
well as it does?



CPU cores



Received packet is delivered into
memory (or L3 cache)



Interrupt triggers packet
handling on this CPU core



Application
calls recv()



Socket state pulled from one
cache to another; Inefficient

Single core bottleneck
for interrupt handling



Multiple receive channels
(up to one per core)

channel_id = hash(4tuple) % n_cores;



Multiple flows



Hopefully!



Usually



channel_id, n = lookup(4tuple);

if( n > 1 )

channel_id += hash(4tuple) % n_cores;



SO_REUSEPORT to the rescue

• Multiple listening sockets on the same TCP port
• One listening socket per worker thread

• Each gets a subset of incoming connection requests

• New connections go to the worker running on the core that 
the flow hashes to

• Connection establishment scales with the number of 
workers

• Received packets are delivered to the ‘right’ core



Problem solved?
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So much for sockets



Let’s get closer to the metal…



Layer-2 APIs

1-6 Mpps/core
Many protocols
End-host applications

1-60 Mpps/core
All protocols
Any network function



60 million 
pkt/s?



17 ns



Some tips for achieving
really fast networking…



Tip 1. The faster your application 
is already, the more speedup 
you’ll get from kernel bypass

(This is just Ahmdal’s law)



Tip 2. NUMA locality applies 
doubly to I/O devices













• DMA transfers will use the L3 cache if:

• The targeted cache line is resident

• Or if not then up to 10% of L3 is available for write-allocate

• Therefore

• If you want consistent high performance, DMA buffers must 
be resident in L3 cache

• To achieve that

• Small set of DMA buffers recycled quickly

• (Even if that means doing an extra copy)



Tip 3.
Queue management is critical



Queues exist mostly to
handle mismatch between
arrival rate and service rate



• Buffers in switches and routers

• Descriptor rings in network adapters

• Socket send and receive buffers

• Shared memory queues, locks etc.

• Run queue in the kernel task scheduler



What happens when queues 
start to fill?



Service rate < arrival rate

Queue fill level increases
(latency++)

Working-set size
increases

(efficiency--)

Service rate drops



Service rate < arrival rate

Queue fills

DROP!



Drops are bad, m’kay

Make  SO_RCVBUF  bigger!



Dilemma!

Small buffers:

Necessary for stable performance when overloaded

Large buffers:

Necessary for absorbing bursts without loss



For stable performance when overloaded

Limit working set size

• Limit the sizes of pools, queues, socket buffers etc.

Shed excess load early  (Tip 3.1)

• Before you’ve wasted time on requests you’re going to have 
to drop anyway



Interrupt moves packets from
descriptor ring to sockets

App thread consumes
from socket buffer



Drop newest data
(only at very high rates)

Drop newest data

Do work for every packet,
whether dropped or not



Drop newest data



Tip 3.2  Drop old data for better response time



Last example: Cache locality



recv()

OpenOnload stack; includes sockets, DMA buffers,
TX and RX rings, control plane etc.



recv()



Problem: Send a small (eg. 200 bytes) reply from a 
different thread



send()

send()

Or…



send()

• Passing a small message to another thread:

• A few cache misses

• send() on a socket last accessed on another core:

• Dozens of cache misses



Thank you!


