
Copyright © 2016 Solarflare Communications, Inc. All rights reserved.

Much Faster Networking

David Riddoch
driddoch@solarflare.com

What is kernel bypass?

The standard receive path

The standard receive path

The standard receive path

The standard receive path

Kernel-bypass receive

Kernel-bypass transmit

Kernel-bypass transmit

Kernel-bypass transmit

Kernel-bypass transmit – even faster

What does all of this
cleverness achieve?

Better performance!

• Fewer CPU instructions for network operations

• Better cache locality

• Faster response (lower latency)

• Higher throughput (higher bandwidth/message rate)

• Reduced contention between threads

• Better core scaling

• Reduced latency jitter

Solarflare’s OpenOnload

• Sockets acceleration using kernel bypass

• Standard Ethernet, IP, TCP and UDP

• Standard BSD sockets API

• Binary compatible with existing applications

OpenOnload intercepts network calls

Single thread throughput and latency

UDP receive throughput (small messages)

Kernel stack OpenOnload

A much more challenging application

HAProxy performance and scaling

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

C
o

n
n

e
ct

io
n

s/
se

c
(0

0
0

s)

CPU Cores

100K Byte

Solarflare Net Driver

Intel Net Driver

Solarflare OpenOnload

0

100

200

300

400

500

600

1 2 3 4 5 6 8 10 12

C
o

n
n

e
ct

io
n

s/
se

c
(0

0
0

s)

CPU Cores

1K Byte

Solarflare Net Driver

Intel Net Driver

Solarflare OpenOnload

Solarflare kernel

Other kernel

OpenOnload

Solarflare kernel

Other kernel

OpenOnload

1 KiB message size

100 KiB message size

C
o

n
n

ec
ti

o
n

s/
s

(1
0

0
0

s)
C

o
n

n
ec

ti
o

n
s/

s
(1

0
0

0
s)

Why doesn’t performance scale
when using the kernel stack?

Better question:

How come it scales as
well as it does?

CPU cores

Received packet is delivered into
memory (or L3 cache)

Interrupt triggers packet
handling on this CPU core

Application
calls recv()

Socket state pulled from one
cache to another; Inefficient

Single core bottleneck
for interrupt handling

Multiple receive channels
(up to one per core)

channel_id = hash(4tuple) % n_cores;

Multiple flows

Hopefully!

Usually

channel_id, n = lookup(4tuple);

if(n > 1)

channel_id += hash(4tuple) % n_cores;

SO_REUSEPORT to the rescue

• Multiple listening sockets on the same TCP port
• One listening socket per worker thread

• Each gets a subset of incoming connection requests

• New connections go to the worker running on the core that
the flow hashes to

• Connection establishment scales with the number of
workers

• Received packets are delivered to the ‘right’ core

Problem solved?

0

100

200

300

400

500

600

1 2 3 4 5 6 8 10 12

C
o

n
n

e
ct

io
n

s/
se

c
(0

0
0

s)

CPU Cores

1K Byte

Solarflare Net Driver

Intel Net Driver

Solarflare OpenOnload

Solarflare kernel

Other kernel

OpenOnload

1 KiB message size

C
o

n
n

ec
ti

o
n

s/
s

(1
0

0
0

s)

Number of CPU cores

So much for sockets

Let’s get closer to the metal…

Layer-2 APIs

1-6 Mpps/core
Many protocols
End-host applications

1-60 Mpps/core
All protocols
Any network function

60 million
pkt/s?

17 ns

Some tips for achieving
really fast networking…

Tip 1. The faster your application
is already, the more speedup
you’ll get from kernel bypass

(This is just Ahmdal’s law)

Tip 2. NUMA locality applies
doubly to I/O devices

• DMA transfers will use the L3 cache if:

• The targeted cache line is resident

• Or if not then up to 10% of L3 is available for write-allocate

• Therefore

• If you want consistent high performance, DMA buffers must
be resident in L3 cache

• To achieve that

• Small set of DMA buffers recycled quickly

• (Even if that means doing an extra copy)

Tip 3.
Queue management is critical

Queues exist mostly to
handle mismatch between
arrival rate and service rate

• Buffers in switches and routers

• Descriptor rings in network adapters

• Socket send and receive buffers

• Shared memory queues, locks etc.

• Run queue in the kernel task scheduler

What happens when queues
start to fill?

Service rate < arrival rate

Queue fill level increases
(latency++)

Working-set size
increases

(efficiency--)

Service rate drops

Service rate < arrival rate

Queue fills

DROP!

Drops are bad, m’kay

Make SO_RCVBUF bigger!

Dilemma!

Small buffers:

Necessary for stable performance when overloaded

Large buffers:

Necessary for absorbing bursts without loss

For stable performance when overloaded

Limit working set size

• Limit the sizes of pools, queues, socket buffers etc.

Shed excess load early (Tip 3.1)

• Before you’ve wasted time on requests you’re going to have
to drop anyway

Interrupt moves packets from
descriptor ring to sockets

App thread consumes
from socket buffer

Drop newest data
(only at very high rates)

Drop newest data

Do work for every packet,
whether dropped or not

Drop newest data

Tip 3.2 Drop old data for better response time

Last example: Cache locality

recv()

OpenOnload stack; includes sockets, DMA buffers,
TX and RX rings, control plane etc.

recv()

Problem: Send a small (eg. 200 bytes) reply from a
different thread

send()

send()

Or…

send()

• Passing a small message to another thread:

• A few cache misses

• send() on a socket last accessed on another core:

• Dozens of cache misses

Thank you!

