Complex business logic Ubiquitous language

Domain-driven Design Domain modeling

e

DDD & Microservices

At |last, some boundaries!

Eric Evans
¥ @ericevansO
domainlanguage.com



You say bandwagon’ like it's a bad thing!



Why do | like microservices?

* Autonomous teams with isolated implementation.
* Acknowledge the rough and tumble of enterprises.
» Cattle not pets.

* A philosophical break from the past — gives us a
chance to shake assumptions.

* But! Different people mean different things.



Services and Messages




3 3
3 3
3 3




ENE
GEE

How do they understand the messages?



Bounded Context

e context The setting in which a word or statement
appears that determines its meaning

* bounded context The conditions under which a
particular model is defined and applicable.



Context Map translator

ol

bounded contexts

R —







Asymmetrical Relationships

relationship
Context Name > Context Name
(point toward power)










R Map




o

DD
B<BEE

Context Map
9JO




!

&

P oo
ozoL:

Context Map
0

)










R Map




R Map




enterprsemodet
shared-datapase-schema

fiad fiald 1
enreHhg

Ihere are always
multiple models.



Models need to be clear,
not big.

Useful models need crisp definitions.
Definitions require clear context.
Useful models need simple assertions.

Assertions require bounaaries.



R Map













-iction!
Map what /s.

Context Map







Not all of a large system
will be well designed.









Microservice as
Context Boundary

Allow high-concept modeling in a messy world.
Allow specialized models for distinct problems.
Mitigate consequences of design mistakes.
Acknowledge the rough and tumble of enterprises.

But...

Very interesting stuff is not inside the services!



Interchange context












A relatively generic data model for sharing.
or...

A place to model protocols of interaction.
Modeling and design of higher-level solutions.

A domain language tuned to these purposes.



Interchange Context

Expressed in terms of service interfaces/messages.

Distinct from the objects/functions of the internals of a
service.

Prevents distortion/freezing of early-dominant contexts.

Gives big-picture understanding when we have many
services.

Usually more than one! (Avoid enterprise model.)



Why not logical boundaries®

e Smart people | respect point out that most of what |
want is the logical partitioning of the system.

 We've had decades to get that to work.

e Some techniques are too subtle to survive the
rough and tumble.



Wrap up

Subtle design (such as DDD) requires concrete
boundaries. Microservices have them.

Proliferation of services recreate some of the old
problems.

Context Maps help visualize and communicate
about those problems.

Modest use of interchange contexts can help
oroduce coherent sets of microservices.



Not all of a large system
will be well designed.



DDD & Microservices

At |last, some boundaries!

Eric Evans
@ericevansO
domainlanguage.com



