
Rust: Systems
Programming for

Everyone
Felix Klock (@pnkfelix), Mozilla

space : next slide; esc : overview; arrows navigate
http://bit.ly/1LQM3PS

Why ...?

Why use Rust?
Fast code, low memory footprint

Go from bare metal (assembly; C FFI) ...

... to high-level (collections, closures, generic

containers) ...

with zero cost (no GC, unboxed closures,

monomorphization of generics)

Safety and Parallelism

Safety and Parallelism
Safety

No segmentation faults

No undefined behavior

No data races

(Multi-paradigm) Parallelism
msg passing via channels

shared state via Arc and atomics, Mutex, etc

use native threads... or scoped threads... or work-stealing...

Why would you (Felix) work
on Rust?

It's awesome!

(Were prior slides really not a sufficient answer?)

oh, maybe you meant ...

Why would Mozilla sponsor Rust?
Hard to prototype research-y browser changes atop C++ code base

Rust ⇒ Servo, WebRender
Want Rust for next-gen infrastructure (services, IoT)

"Our mission is to ensure the Internet is a global
public resource, open and accessible to all. An
Internet that truly puts people first, where
individuals can shape their own experience and are
empowered, safe and independent."

"accessible to all"

Where is Rust now?
1.0 release was back in May 2015

Rolling release cycle (up to Rust 1.7 as of March 2nd 2016)

Open source from the begining
https://github.com/rust-lang/rust/

Open model for future change (RFC process)
https://github.com/rust-lang/rfcs/

Awesome developer community (~1,000 people in #rust, ~250
people in #rust-internals, ~1,300 unique commiters to rust.git)

Talk plan
"Why Rust" Demonstration
"Ownership is easy" (... or is it?)
Sharing Stuff

Sharing capabilities (Language stuff)

Sharing work (Parallelism stuff)

Sharing code (Open source distribution stuff)

Lightning Demo

Demo: sequential web page fetch
fn sequential_web_fetch() {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 "http://imgur.com", "http://mozilla.org"];

 for &site in sites { // step through the array...
 let client = Client::new();
 let res = client.get(site).send().unwrap();
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site, char_count);
 }
}

(lets get rid of the Rust-specific pattern binding in for; this is not a
tutorial)

Demo: sequential web page fetch
fn sequential_web_fetch() {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 "http://imgur.com", "http://mozilla.org"];

 for site_ref in sites { // step through the array...
 let site = *site_ref; // (separated for expository purposes)

 { // (and a separate block, again for expository purposes)
 let client = Client::new();

 let res = client.get(site).send().unwrap();
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site, char_count);
 }
 }
}

Demo: concurrent web page fetch
fn concurrent_web_fetch() -> Vec<::std::thread::JoinHandle<()>> {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 "http://imgur.com", "http://mozilla.org"];
 let mut handles = Vec::new();
 for site_ref in sites {
 let site = *site_ref;
 let handle = ::std::thread::spawn(move || {
 // block code put in closure: ~~~~~~~
 let client = Client::new();

 let res = client.get(site).send().unwrap();
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site, char_count);
 });

 handles.push(handle);
 }

 return handles;
}

Print outs
Sequential version:

site: http://www.eff.org/ chars: 42425
site: http://rust-lang.org/ chars: 16748
site: http://imgur.com chars: 152384
site: http://mozilla.org chars: 63349

(on every run, when internet, and sites, available)

Concurrent version:
site: http://imgur.com chars: 152384
site: http://rust-lang.org/ chars: 16748
site: http://mozilla.org chars: 63349
site: http://www.eff.org/ chars: 42425

(on at least one run)

"what is this 'soundness' of which
you speak?"

Demo: soundness I
fn sequential_web_fetch_2() {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 // ~~~~~ ̀sites̀, an array (slice) of strings, is stack-local
 "http://imgur.com", "http://mozilla.org"];

 for site_ref in sites {
 // ~~~~~~~~ ̀site_ref̀ is a *reference to* elem of array.
 let client = Client::new();
 let res = client.get(*site_ref).send().unwrap();
 // moved deref here ~~~~~~~~~
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site_ref, char_count);
 }
}

Demo: soundness II
fn concurrent_web_fetch_2() -> Vec<::std::thread::JoinHandle<()>> {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 // ~~~~~ ̀sites̀, an array (slice) of strings, is stack-local
 "http://imgur.com", "http://mozilla.org"];
 let mut handles = Vec::new();
 for site_ref in sites {
 // ~~~~~~~~ ̀site_ref̀ still a *reference* into an array
 let handle = ::std::thread::spawn(move || {
 let client = Client::new();
 let res = client.get(*site_ref).send().unwrap();
 // moved deref here ~~~~~~~~~
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site_ref, char_count);
 // Q: will ̀sites̀ array still be around when above runs?
 });
 handles.push(handle);
 }
 return handles;
}

some (white) lies:
"Rust is just about

ownership"

"Ownership is
intuitive"

"Ownership is intuitive"
Let's buy a car

let money: Money = bank.withdraw_cash();
let my_new_car: Car = dealership.buy_car(money);

let second_car = dealership.buy_car(money); // <-- cannot reuse

money transferred into dealership, and car transferred to us.

"Ownership is intuitive"
Let's buy a car

let money: Money = bank.withdraw_cash();
let my_new_car: Car = dealership.buy_car(money);
// let second_car = dealership.buy_car(money); // <-- cannot reuse

money transferred into dealership, and car transferred to us.

my_new_car.drive_to(home);
garage.park(my_new_car);

my_new_car.drive_to(...) // now doesn't work

(can't drive car without access to it, e.g. taking it out of the garage)

"Ownership is intuitive"
Let's buy a car

let money: Money = bank.withdraw_cash();
let my_new_car: Car = dealership.buy_car(money);
// let second_car = dealership.buy_car(money); // <-- cannot reuse

money transferred into dealership, and car transferred to us.

my_new_car.drive_to(home);
garage.park(my_new_car);
// my_new_car.drive_to(...) // now doesn't work

(can't drive car without access to it, e.g. taking it out of the garage)

let my_car = garage.unpark();
my_car.drive_to(work);

...reflection time...

Correction: Ownership is intuitive,
except for programmers ...

(copying data like integers, and characters, and .mp3's, is "free")

... and anyone else who names things

Über Sinn und Bedeutung
("On sense and reference" -- Gottlob Frege, 1892)

If ownership were all we had, car-purchase slide seems nonsensical

my_new_car.drive_to(home);

Does this transfer home into the car?

Do I lose access to my home, just because I drive to it?

We must distinguish an object itself from ways to name that object

Above, home cannot be (an owned) Home

home must instead be some kind of reference to a Home

So we will need references
We can solve any problem by introducing an extra

level of indirection

-- David J. Wheeler

a truth: Ownership is important

Ownership is important
Ownership enables: which removes:

RAII-style destructors a source of memory leaks (or fd leaks, etc)

no dangling pointers many resource management bugs

no data races many multithreading heisenbugs

Do I need to take ownership here, accepting the
associated resource management responsibility?

Would temporary access suffice?

Good developers ask this already!

Rust forces function signatures to encode the answers

(and they are checked by the compiler)

Sharing Data:
Ownership and

References

Rust types
Move Copy Copy if T:Copy
Vec<T>, String, ... i32, char, ... [T; n], (T1,T2,T3), ...

struct Car { color: Color, engine: Engine }

fn demo_ownership() {
 let mut used_car: Car = Car { color: Color::Red,
 engine: Engine::BrokenV8 };
 let apartments = ApartmentBuilding::new();

references to data (&mut T, &T):

 let my_home: &Home; // <-- an "immutable" borrow
 let christine: &mut Car; // <-- a "mutable" borrow
 my_home = &apartments[6]; // (read ̀mut̀ as "exclusive")
 let neighbors_home = &apartments[5];
 christine = &mut used_car;
 christine.engine = Engine::VintageV8;
}

Why multiple &-reference types?
Distinguish exclusive access from shared access

Enables safe, parallel API's

A Metaphor

(reminder: metaphors
never work 100%)

let christine = Car::new();

This is "Christine"

pristine unborrowed car

(apologies to Stephen King)

let read_only_borrow = &christine;

single inspector (immutable borrow)

(apologies to Randall Munroe)

read_only_borrows[2] = &christine;
read_only_borrows[3] = &christine;
read_only_borrows[4] = &christine;

many inspectors (immutable borrows)

When inspectors are finished, we are left again with:

pristine unborrowed car

let mutable_borrow = &mut christine; // like taking keys ...
give_arnie(mutable_borrow); // ... and giving them to someone

driven car (mutably borrowed)

Can't mix the two in safe code!

Otherwise: (data) races!

read_only_borrows[2] = &christine;
let mutable_borrow = &mut christine;
read_only_borrows[3] = &christine;
// ⇒ CHAOS!

mixing mutable and immutable is illegal

Ownership T
Exclusive access &mut T ("mutable")

Shared access &T ("read-only")

Exclusive access

&mut: can I borrow the car?
fn borrow_the_car_1() {
 let mut christine = Car::new();
 {
 let car_keys = &mut christine;
 let arnie = invite_friend_over();
 arnie.lend(car_keys);
 } // end of scope for ̀arniè and ̀car_keys̀
 christine.drive_to(work); // I still own the car!
}

But when her keys are elsewhere, I cannot drive christine!

fn borrow_the_car_2() {
 let mut christine = Car::new();
 {
 let car_keys = &mut christine;
 let arnie = invite_friend_over();
 arnie.lend(car_keys);
 christine.drive_to(work); // <-- compile error
 } // end of scope for ̀arniè and ̀car_keys̀
}

Extending the metaphor
Possessing the keys, Arnie could take the car for a new paint job.

fn lend_1(arnie: &Arnie, k: &mut Car) { k.color = arnie.fav_color; }

Or lend keys to someone else (reborrowing) before paint job

fn lend_2(arnie: &Arnie, k: &mut Car) {
 arnie.partner.lend(k); k.color = arnie.fav_color;
}

Owner loses capabilities attached to &mut-borrows only temporarily (*)

(*): "Car keys" return guaranteed by Rust; sadly, not by physical world

End of metaphor
(on to models)

Pointers, Smart and
Otherwise

(More pictures)

Stack allocation
let b = B::new();

stack allocation

let b = B::new();

let r1: &B = &b;
let r2: &B = &b;

stack allocation and immutable borrows

(b has lost write capability)

let mut b = B::new();

let w: &mut B = &mut b;

stack allocation and mutable borrows

(b has temporarily lost both read and write capabilities)

Heap allocation: Box
let a = Box::new(B::new());

pristine boxed B

a (as owner) has both read and write capabilities

Immutably borrowing a box
let a = Box::new(B::new());
let r_of_box: &Box = &a; // (not directly a ref of B)

let r1: &B = &*a;
let r2: &B = &a; // <-- coercion!

immutable borrows of heap-allocated B

a retains read capabilities (has temporarily lost write)

Mutably borrowing a box
let mut a = Box::new(B::new());

let w: &mut B = &mut a; // (again, coercion happening here)

mutable borrow of heap-allocated B

a has temporarily lost both read and write capabilities

Heap allocation: Vec
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }

vec, filled to capacity

Vec Reallocation
...
a.push(B::new());

before after

Slices: borrowing parts of an array

Basic Vec
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }

pristine unborrowed vec

(a has read and write capabilities)

Immutable borrowed slices
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }
let r1 = &a[0..3];
let r2 = &a[7..n-4];

mutiple borrowed slices vec

(a has only read capability now; shares it with r1 and r2)

Safe overlap between &[..]
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }
let r1 = &a[0..7];
let r2 = &a[3..n-4];

overlapping slices

Basic Vec again

pristine unborrowed vec

(a has read and write capabilities)

Mutable slice of whole vec
let w = &mut a[0..n];

mutable slice of vec

(a has no capabilities; w now has read and write capability)

Mutable disjoint slices
let (w1,w2) = a.split_at_mut(n-4);

disjoint mutable borrows

(w1 and w2 share read and write capabilities for disjoint portions)

Shared Ownership

Shared Ownership
let rc1 = Rc::new(B::new());
let rc2 = rc1.clone(); // increments ref-count on heap-alloc'd value

shared ownership via ref counting

(rc1 and rc2 each have read access; but neither can statically assume
exclusive (mut) access, nor can they provide &mut borrows without

assistance.)

Dynamic Exclusivity

RefCell<T>: Dynamic Exclusivity
let b = Box::new(RefCell::new(B::new()));

let r1: &RefCell = &b;
let r2: &RefCell = &b;

box of refcell

RefCell<T>: Dynamic Exclusivity
let b = Box::new(RefCell::new(B::new()));
let r1: &RefCell = &b;
let r2: &RefCell = &b;
let w = r2.borrow_mut(); // if successful, ̀ ẁ acts like ̀&mut B̀

fallible mutable borrow

// below panics if ̀ ẁ still in scope

// below panics if ̀ ẁ still in scope
let w2 = b.borrow_mut();

Previous generalizes to
shared ownership

Rc<RefCell<T>>
let rc1 = Rc::new(RefCell::new(B::new()));
let rc2 = rc1.clone(); // increments ref-count on heap-alloc'd value

shared ownership of refcell

Rc<RefCell<T>>
let rc1 = Rc::new(RefCell::new(B::new()));
let rc2 = rc1.clone();
let r1: &RefCell = &rc1;
let r2: &RefCell = &rc2; // (or even just ̀r1̀)

borrows of refcell can alias

Rc<RefCell<T>>
let rc1 = Rc::new(RefCell::new(B::new()));
let rc2 = rc1.clone();
let w = rc2.borrow_mut();

there can be only one!

What static guarantees does
Rc<RefCell<T>> have?

Not much!

If you want to port an existing imperative algorithm with all sorts of
sharing, you could try using Rc<RefCell<T>>.

You then might spend much less time wrestling with Rust's type
(+borrow) checker.

The point: Rc<RefCell<T>> is nearly an anti-pattern. It limits static
reasoning. You should avoid it if you can.

Other kinds of shared ownership
TypedArena<T>

Cow<T>

Rc<T> vs Arc<T>

Sharing Work:
Parallelism /
Concurrency

Threading APIs (plural!)
std::thread

dispatch : OS X-specific "Grand Central Dispatch"

crossbeam : Lock-Free Abstractions, Scoped "Must-be" Concurrency

rayon : Scoped Fork-join "Maybe" Parallelism (inspired by Cilk)

(Only the first comes with Rust out of the box)

std::thread
fn concurrent_web_fetch() -> Vec<::std::thread::JoinHandle<()>> {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 "http://imgur.com", "http://mozilla.org"];
 let mut handles = Vec::new();
 for site_ref in sites {
 let site = *site_ref;
 let handle = ::std::thread::spawn(move || {
 // block code put in closure: ~~~~~~~
 let client = Client::new();

 let res = client.get(site).send().unwrap();
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site, char_count);
 });

 handles.push(handle);
 }

 return handles;
}

dispatch
fn concurrent_gcd_fetch() -> Vec<::dispatch::Queue> {
 use hyper::{self, Client};
 use std::io::Read; // pulls in ̀chars̀ method
 use dispatch::{Queue, QueueAttribute};

 let sites = &["http://www.eff.org/", "http://rust-lang.org/",
 "http://imgur.com", "http://mozilla.org"];
 let mut queues = Vec::new();
 for site_ref in sites {
 let site = *site_ref;
 let q = Queue::create("qcon2016", QueueAttribute::Serial);
 q.async(move || {
 let client = Client::new();

 let res = client.get(site).send().unwrap();
 assert_eq!(res.status, hyper::Ok);
 let char_count = res.chars().count();
 println!("site: {} chars: {}", site, char_count);
 });

 queues.push(q);
 }

 return queues;
}

crossbeam
lock-free data structures

scoped threading abstraction

upholds Rust's safety (data-race freedom)
guarantees

lock-free data structures

crossbeam MPSC benchmark
mean ns/msg (2 producers, 1 consumer; msg count 10e6; 1G heap)

Rust
channel

crossbeam
MSQ

crossbeam
SegQueue

Scala
MSQ

Java
ConcurrentLinkedQueue

108ns 98ns
53ns

461ns

192ns

crossbeam MPMC benchmark
mean ns/msg (2 producers, 2 consumers; msg count 10e6; 1G heap)

Rust
channel
(N/A)

crossbeam
MSQ

crossbeam
SegQueue

Scala
MSQ

Java
ConcurrentLinkedQueue

102ns
58ns

239ns
204ns

See "Lock-freedom without garbage collection"
https://aturon.github.io/blog/2015/08/27/epoch/

scoped threading?
std::thead does not allow sharing stack-local data

fn std_thread_fail() {
 let array: [u32; 3] = [1, 2, 3];

 for i in &array {
 ::std::thread::spawn(|| {
 println!("element: {}", i);
 });
 }
}

error: ̀arraỳ does not live long enough

crossbeam scoped threading
fn crossbeam_demo() {
 let array = [1, 2, 3];

 ::crossbeam::scope(|scope| {
 for i in &array {
 scope.spawn(move || {
 println!("element: {}", i);
 });
 }
 });
}

::crossbeam::scope enforces parent thread joins on all spawned
children before returning

ensures that it is sound for children to access local references
passed into them.

crossbeam scope: "must-
be concurrency"

Each scope.spawn(..) invocation fires up a fresh
thread

(Literally just a wrapper around std::thread)

rayon: "maybe
parallelism"

rayon demo 1: map reduce
Sequential

fn demo_map_reduce_seq(stores: &[Store], list: Groceries) -> u32 {
 let total_price = stores.iter()
 .map(|store| store.compute_price(&list))
 .sum();
 return total_price;
}

Parallel (potentially)
fn demo_map_reduce_par(stores: &[Store], list: Groceries) -> u32 {
 let total_price = stores.par_iter()
 .map(|store| store.compute_price(&list))
 .sum();
 return total_price;
}

Rayon's Rule
the decision of whether or not to use parallel threads

is made dynamically, based on whether idle cores
are available

i.e., solely for offloading work, not for when concurrent operation is
necessary for correctness

(uses work-stealing under the hood to distribute work among a fixed
set of threads)

rayon demo 2: quicksort
fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
 if v.len() > 1 {
 let mid = partition(v);
 let (lo, hi) = v.split_at_mut(mid);
 rayon::join(|| quick_sort(lo),
 || quick_sort(hi));
 }
}

fn partition<T:PartialOrd+Send>(v: &mut [T]) -> usize {
 // see https://en.wikipedia.org/wiki/
 // Quicksort#Lomuto_partition_scheme
 ...
}

rayon demo 3: buggy quicksort
fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
 if v.len() > 1 {
 let mid = partition(v);
 let (lo, hi) = v.split_at_mut(mid);
 rayon::join(|| quick_sort(lo),
 || quick_sort(hi));
 }
}

fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
 if v.len() > 1 {
 let mid = partition(v);
 let (lo, hi) = v.split_at_mut(mid);
 rayon::join(|| quick_sort(lo),
 || quick_sort(lo));
 // ~~ data race!
 }
}

(See blog post "Rayon: Data Parallelism in Rust" bit.ly/1IZcku4)

Big Idea
3rd parties identify (and provide) new abstractions for
concurrency and parallelism unanticipated in std lib.

Soundness and 3rd
Party Concurrency

The Secret Sauce
Send

Sync

lifetime bounds

Send and Sync
T: Send means an instance of T can be transferred between threads

(i.e. move or copied as appropriate)

T: Sync means two threads can safely share a reference to an
instance of T

Examples
T: Send : T can be transferred between threads

T: Sync : two threads can share refs to a T

String is Send
Vec<T> is Send (if T is Send)
(double-check: why not require T: Sync for Vec<T>: Send?)
Rc<T> is not Send (for any T)
but Arc<T> is Send (if T is Send and Sync)
(to ponder: why require T:Send for Arc<T>?)
&T is Send if T: Sync
&mut T is Send if T: Send

Send and Sync are only
half the story

other half is lifetime bounds; come
see me if curious

Sharing Code:
Cargo

Sharing Code
std::thread is provided with std lib

But dispatch, crossbeam, and rayon are 3rd party

(not to mention hyper and a host of other crates used in this talk's
construction)

What is Rust's code distribution story?

Cargo
cargo is really simple to use

cargo new -- create a project
cargo test -- run project's unit tests
cargo run -- run binaries associated with project
cargo publish -- push project up to crates.io

Edit the associated Cargo.toml file to:

add dependencies
specify version / licensing info
conditionally compiled features
add build-time behaviors (e.g. code generation)

"What's this about crates.io?"

crates.io
Open-source crate distribution site

Has every version of every crate

Cargo adheres to semver

Semver
The use of in cargo basically amounts to this:Semantic Versioning

Major versions (MAJOR.minor.patch) are free to break whatever they
want.

New public API's can be added with minor versions updates
(major.MINOR.patch), as long as they do not impose breaking changes.

In Rust, breaking changes includes data-structure representation
changes.

Adding fields to structs (or variants to enums) can cause their memory
representation to change.

http://semver.org/

Why major versions can include
breaking changes

Cargo invokes the Rust compiler in a way that salts the symbols
exported by a compiled library.

This ends up allowing two distinct (major) versions of a library to be
used simultaneously in the same program.

This is important when pulling in third party libraries.

Fixing versions
cargo generates a Cargo.lock file that tracks the versions you built

the project with

Intent: application (i.e. final) crates should check their Cargo.lock
into version control

Ensures that future build attempts will choose the same versions

However: library (i.e. intermediate) crates should not check their
Cargo.lock into version control.

Instead, everyone should follow sem.ver.; then individual applications
can mix different libraries into their final product, upgrading
intermediate libraries as necessary

Crate dependency graph
Compiler ensures one cannot pass struct defined via X version 2.x.y

into function expecting X version 1.m.n, or vice versa.

A: Graph Structure B: Token API

C: Lexical Scanner D: GLL Parser P: Linked Program

In Practice
If you (*) follow the sem.ver. rules, then you do not usually have to
think hard about those sorts of pictures.

"you" is really "you and all the crates you use"

You may not believe me, but cargo is really simple to use
Coming from a C/C++ world, this feels like magic
(probably feels like old hat for people used to package dependency
managers)

Final Words

Final Words
(and no more pictures)

Interop
Rust to C

easy: extern { ... } and unsafe { ... }

C to Rust

easy: #[no_mangle] extern "C" fn foo(...) { ... }

Ruby, Python, etc to Rust

see e.g. https://github.com/wycats/rust-bridge

Customers
Mozilla (of course)

Skylight

MaidSafe

... others

Pivot from C/C++ to Rust
Maidsafe is one example of this

Rust as enabler of
individuals

From "mere script programmer"
to "lauded systems hacker"

Or if you prefer:
Enabling sharing systems hacking knowledge with

everyone

Programming in Rust has made me
look at C++ code in a whole new light

Thanks

Thanks
www.rust-lang.org

Hack Without Fear

