
©2015 Azul Systems, Inc.	 	 	 	 	 	

Understanding

Hardware Transactional

Memory

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

©2015 Azul Systems, Inc.	 	 	 	 	 	

Agenda

Brief introduction

What is Hardware Transactional Memory (HTM)?

Cache coherence basics & how HTM works

What it looks like from a runtime point of view

Interesting coding considerations

©2015 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene
co-founder, CTO @Azul
Systems

Have been working on “think
different” GC and runtime
approaches since 2002

Built world’s 1st commercially
shipping HTM system, along
with JVM support for HTM

A Long history building
Virtual & Physical Machines,
Operating Systems,
Enterprise apps, etc...

I also depress people by
demonstrating how terribly
wrong their latency
measurements are…

* working on real-world trash compaction issues, circa 2004

©2015 Azul Systems, Inc.	 	 	 	 	 	

As far as I am concerned
GC is a solved problem

©2015 Azul Systems, Inc.	 	 	 	 	 	

Why does HTM matter now?

Because it is (finally) here!

HTM already available in the past

e.g. Azul Vega, since 2004

e.g. some later variants of Power architecture

e.g. some designs for SPARC

But it is now here in commodity server chips

Intel TSX, on modern Intel Xeons

Already in E7-V3 (4+ sockets), E3-V4, E3-V5 (1 socket)

Coming (1H2016) in E5-26xx V4 (“Broadwell") chips

Most new servers will have HTM by 2H2016

©2015 Azul Systems, Inc.	 	 	 	 	 	

What is HTM?

©2015 Azul Systems, Inc.	 	 	 	 	 	

What is HTM?

(For the kind of HTM I will be talking about…)

Can be thought of as
“Speculative Multi-Address Atomicity”

Transaction starts and ends with explicit instructions

No special load or store instructions

All memory operations in a successfully completed
transaction appear to execute atomically (to other
threads)

Transactions may abort. All memory operations in an
aborted transaction appear “to have never happened”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Cache Coherence

Protocols can be messy

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

But conceptually it’s not that messy…

©2015 Azul Systems, Inc.	 	 	 	 	 	

Cache line state from an
individual CPU’s point of view

I don’t have it

I have a copy (and someone else may, too)

I have the only copy

I have the only copy, and I’ve changed it

I
S
E
M

(Invalid)

(Shared)

(Exclusive)

(Modified)

©2015 Azul Systems, Inc.	 	 	 	 	 	

Cache line state from an
individual CPU’s point of view

I don’t have it

I have a copy (and someone else may, too)

I have the only copy

I have the only copy, and I’ve changed it

I
S
E
M

(Invalid)

(Shared)

(Exclusive)

(Modified)

©2015 Azul Systems, Inc.	 	 	 	 	 	

HTM builds on existing cache coherence

©2015 Azul Systems, Inc.	 	 	 	 	 	

Conceptual cache line state
additions for HTM

Line was accessed during speculation:

Line was read from during speculation

Line was modified during speculation

When transaction completes, clear all
speculation tracking state

Losing track of a line that was accessed
during speculation aborts the transaction

Aborts invalidate speculatively modified lines

©2015 Azul Systems, Inc.	 	 	 	 	 	

What can make the cache
“lose track” of a line?

Another CPU wants to write to it

Other CPU would need it “exclusive”

It would first need to invalidate it in this cache

Another CPU wants to read from it

Cache line would need to be in “shared” state here

If it were in speculatively modified state: abort

Capacity related self-eviction

E.g. current Xeons: 32KB, 8 way set associative

©2015 Azul Systems, Inc.	 	 	 	 	 	

That’s it…. For memory.

©2015 Azul Systems, Inc.	 	 	 	 	 	

CPU state. E.g. Intel TSX

In addition to memory transactionality,
CPU architectural state is maintained

On abort, PC moves to location provided in XBEGIN

EAX is changed to indicate abort information

All other architecture state remains the same as it
was before XBEGIN was executed

©2015 Azul Systems, Inc.	 	 	 	 	 	

So when can you do with HTM?

Well, transact on memory, of course…

©2015 Azul Systems, Inc.	 	 	 	 	 	

Speculative Lock Elision

2001 PhD. thesis by Ravi Rajwar

** An independent work on a somewhat similar lock serialization avoidance
concept by Jose F. Martinez and Josep Torrellas, UIUC, also published in 2001

©2015 Azul Systems, Inc.	 	 	 	 	 	

©2015 Azul Systems, Inc.	 	 	 	 	 	

Using HTM under the hood in a JVM

A trip down transactional memory lane

© 2005 Azul Systems, Inc.

Speculative Locking: 
Breaking the Scale Barrier

Gil Tene, VP Technology, CTO
Ivan Posva, Senior Staff Engineer
Azul Systems

www.azulsystems.com

©2005 Azul Systems, Inc. 25

New JVM capabilities improve  
multi-threaded application scalability.

How can this affect the way you code?

Speculative locking reduces effects of Amdahl's law

Multi-threaded Java Apps can Scale

www.azulsystems.com

©2005 Azul Systems, Inc. 26

Agenda

Why do we care?
Lock contention vs. Data contention
Transactional execution of synchronized {…}
Measurements
Effects on how you code for contention
Summary

www.azulsystems.com

©2005 Azul Systems, Inc. 27

Serialized portions of program limit scale
Amdahl’s Law

• efficiency = 1/(N*q + (1-q))
─ N = # of concurrent threads
─ q = fraction of serialized code

fraction of
serialized code

ef
fic

ie
nc

y

0.0

0.3

0.5

0.8

1.0

processors (N)
1 11 21 31 41 51 61 71 81 91

0.10% 0.50%
1.00% 2.00%
5.00% 20.00%

www.azulsystems.com

©2005 Azul Systems, Inc. 28

Amdahl’s Law Effect on Throughput
th

ro
u

g
h

p
u

t
sc

al
e

fa
ct

or

0

25

50

75

100

processors

1 11 21 31 41 51 61 71 81 91

0.10%
0.50%
1.00%
2.00%
5.00%
20.00%
ideal

www.azulsystems.com

©2005 Azul Systems, Inc. 29

Amdahl’s Law Example

• The theoretical limit is usually intuitive
─ Assume 10% serialization
─ At best you can do 10x the work of 1 CPU

• Efficiency drops are dramatic and may be less intuitive
─ Assume 10% Serialization
─ 10 CPUs will not scale past a speedup of 5.3x (Eff. 0.53)
─ 16 CPUs will not scale past a speedup of 6.4x (Eff. 0.48)
─ 64 CPUs will not scale past a speedup of 8.8x (Eff. 0.14)
─ 99 CPUs will not scale past a speedup of 9.2x (Eff. 0.09)
─ …
─ It will take a whole lot of inefficient CPUs to [never] reach a 10x

www.azulsystems.com

©2005 Azul Systems, Inc. 30

Agenda

Why do we care?
Lock contention vs. Data contention
Transactional execution of synchronized {…}
Measurements
Effects on how you code
Summary

www.azulsystems.com

©2005 Azul Systems, Inc. 31

• Lock contention:
 An attempt by one thread to acquire a lock when

another thread is holding it

• Data contention:
 An attempt by one thread to atomically access

data when another thread expects to manipulate
the same data atomically

Lock Contention vs. Data Contention

www.azulsystems.com

©2005 Azul Systems, Inc. 32

Data Contention in a 
Shared Data Structure

• Readers do not contend
• Readers and writers don’t always contend
• Even writers may not contend with other

writers

www.azulsystems.com

©2005 Azul Systems, Inc. 33

• Need synchronization for correct execution
─Critical sections, shared data structures

• Intent is to protect against data contention

• Can’t easily tell in advance
─That’s why we lock…

• Lock contention >= Data contention
─ In reality: lock contention >>= Data contention

Locks are typically very conservative

Synchronization and Locking

www.azulsystems.com

©2005 Azul Systems, Inc. 34

The industry has already solved a similar problem

Database Transactions

• Semantics of potential failure exposed to the
application

• Transactions: atomic group of DB commands
─ All or nothing
─ From “BEGIN TRANSACTION” to “COMMIT”

• Data contention results in a rollback
─ Leaves no trace

• Application can re-execute until successful
• Optimistic concurrency does scale

www.azulsystems.com

©2005 Azul Systems, Inc. 35

Agenda

Why do we care?
Lock contention vs. Data contention
Transactional execution of synchronized {…}
Measurements
Effects on how you code for contention
Summary

There is no spoon.

www.azulsystems.com

www.azulsystems.com

©2005 Azul Systems, Inc. 37

What does synchronized mean?

• It does not actually mean:
grab lock, execute block, release lock

• It does mean:
execute block atomically in relation to other blocks

synchronizing on the same object

• It can be satisfied by the more conservative:
execute block atomically in relation to all other threads

• That looks a lot like a transaction

“The Java Language Specification”, “The Java Virtual Machine Specification”, JSR133

www.azulsystems.com

©2005 Azul Systems, Inc. 38

Transactional execution of
synchronized {…}

• Two basic requirements
─ Detect data contention within the block
─ Roll back synchronized block on data contention

•synchronized can run concurrently
─ JVM can use hardware transactional memory to detect

data contention
─ JVM must rolls back synchronized blocks that

encounter data contention

www.azulsystems.com

©2005 Azul Systems, Inc. 39

Transactional execution of
synchronized {…}

• The JVM maintains the semantic meaning of:
execute block atomically in relation to all other threads

• Uncontended synchronized blocks 
run just as fast as before

• Data contended synchronized blocks 
still serialize execution

• synchronized blocks without data contention 
can execute in parallel

www.azulsystems.com

©2005 Azul Systems, Inc. 40

Transactional execution of
synchronized {…}

• It’s all transparent!
• No changes to Java code
─ The VM handles everything

• Nested synchronized blocks
─ Roll back to outermost transactional synchronized

• Reduces serialization
• Amdahl’s Law now only reflects data contention
─ Desire to reduce data contention

www.azulsystems.com

©2005 Azul Systems, Inc. 41

How does it fit in the current locking schemes?

Implementation in a JVM

• Thin locks handle uncontended synchronized blocks
─ Most common case
─ Uses CAS, no OS interaction

• Thick locks handle data contended synchronized blocks
─ Blocks in the OS

• Transactional monitors handle contended synchronized
blocks that have no data contention
─ Execute synchronized blocks in parallel
─ Uses HW transactional memory support

www.azulsystems.com

©2005 Azul Systems, Inc. 42

Agenda

Why do we care?
Lock contention vs. Data contention
Transactional synchronized {…}
Measurements
Effects on how you code for contention
Summary

www.azulsystems.com

©2005 Azul Systems, Inc. 43

 
Data Contention and Hashtables

• Examples of no data contention in a Hashtable
─ 2 readers
─ 1 reader, 1 writer, different hash buckets
─ 2 writers, different hash buckets

• Examples of data contention in a Hashtable
─ 1 reader, 1 writer in same hash bucket
─ 2 writers in same hash bucket

www.azulsystems.com

©2005 Azul Systems, Inc. 44

1

10

100

1000

10000

100000

4 Threads 16 Threads 64 Threads

Locking
Spec. Locking

Measurements: Hashtable (0% writes)

www.azulsystems.com

©2005 Azul Systems, Inc. 45

10

100

1000

10000

100000

4 Threads 16 Threads 64 Threads

Locking
Spec. Locking

Measurements: Hashtable (5% writes)

www.azulsystems.com

©2005 Azul Systems, Inc. 46

Agenda

Why do we care?
Lock contention vs. Data contention
Transactional synchronized {…}
Measurements
Effects on how you code for contention
Summary

www.azulsystems.com

©2005 Azul Systems, Inc. 47

Minimizing Data Contention 1

private Object table[];
private int size;

public synchronized void put(Object key, Object val) {
 …
 // missed, insert into table
 table[idx] = new HashEntry(key, val, table[idx]);
 size++; // writer data contention
}

public synchronized int size() {
 return size;
}

www.azulsystems.com

©2005 Azul Systems, Inc. 48

private Object table[];
private int sizes[];

public synchronized void put(Object key, Object val) {
 …
 // missed, insert into table
 table[idx] = new HashEntry(key, val, table[idx]);
 sizes[idx]++; // reduced writer data contention
}

public synchronized int size() {
 int size = 0;
 for (int i=0; i<sizes.length; i++) size += sizes[i];
 return size;
}

Minimizing Data Contention 2

www.azulsystems.com

©2005 Azul Systems, Inc. 49

private Object table[];
private int sizes[];
private int cachedSize;
public synchronized void put(Object key, Object val) {
 …
 // missed, insert into table
 table[idx] = new HashEntry(key, val, table[idx]);
 sizes[idx]++;
 cachedSize = -1; // clear the cache
}

public synchronized int size() {
 if (cachedSize < 0) { // reduce size recalculation
 cachedSize = 0;
 for (int i=0; i<sizes.length; i++)
 cachedSize += sizes[i];
 }
 return cachedSize;
}

Minimizing Data Contention 3

www.azulsystems.com

©2005 Azul Systems, Inc. 50

private Object table[];
private int sizes[];
private int cachedSize;
public synchronized void put(Object key, Object val) {
 …
 // missed, insert into table
 table[idx] = new HashEntry(key, val, table[idx]);
 sizes[idx]++;
 if (cachedSize >= 0) cachedSize = -1; // avoid contention
}

public synchronized int size() {
 if (cachedSize < 0) {
 cachedSize = 0;
 for (int i=0; i<sizes.length; i++)
 cachedSize += sizes[i];
 }
 return cachedSize;
}

Minimizing Data Contention 4

www.azulsystems.com

©2005 Azul Systems, Inc. 51

Agenda

Why do we care?
Lock contention vs. Data contention
Transactional synchronized {…}
Measurements
Effects on how you code
Summary

©2015 Azul Systems, Inc.	 	 	 	 	 	

Summary

Hardware Transactional Memory is here!

Expect speculative use for locking and
synchronization in libraries and runtimes

JVMs, CLR, …

POSIX mutexes, semaphores, etc.

It may be useful for some other cool stuff…

©2015 Azul Systems, Inc.	 	 	 	 	 	

Q&A

