
IT’S NOT
CONTINUOUS
DELIVERY
If you can’t deploy to production right now

1

WHO AM I?

Ken Mugrage

ThoughtWorks Technology Evangelist

@kmugrage

2

THE THOUGHTWORKS STORY

3

2000
Legendary	

computer	 scientist	

Martin	 Fowler	 joins	

TW	 as	Chief	

Scientist	

First	Agile	 project	

delivered

2003
Project	 for	Dixons,	 UK	 –

Distributed	 Agile	 across	

UK,	 India,	 Canada,	 US,	

Aus

2006
ThoughtWorks	 Studios	

started

2002
Martin	 takes	Continuous	

Integration	 mainstream

TW	 takes	the	 lead	 in	

creating	 CruiseControl

2004
Testing	 Tools:

•Selenium,	

•NUnit

Gartner	 on	 TW:

•�Enables	 users	 to	do	
things	 they	 could	 not	 do	

before�
•�Has	 business	 impact;	

not	 just	 technology	 for	the	

sake	 of	it�

2008
Cruise	 launch

Twist	 launch

300+	 clients

16	offices

Mingle	 customers	 in	 25	

countries

Forrester:	 TW	 is	one	 of	5	

co�s	 to	make	a	

difference	 to	App	Dev

2001
Agile	Manifesto	

written	 by	Martin	&	

others

2007
Mingle	 launch

25th	 TW	book	

published:	 TW	

Anthology	

2009
Adaptive	 ALM™

Mingle	 3.0

‘90s
Hundreds	 of	

App	Dev

projects
2010
Go	 launch

400	 ThoughtWorks	

Studios	 customers	 in	

30+	 countries

2013
Mingle	 SaaS

launch

2014
Snap	 launch

Go	Open	

Sourced

2015
Gauge	

replaces

Twist

WHY THIS TALK

4

THERE IS NO TRY

5

WHY CONTINUOUS DELIVERY?

6

We follow these principles:
Our highest priority is to satisfy the customer

through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for

the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

PARTIALLY “DONE” MIGHT STILL BE USEFUL

7

PARTIALLY “DONE” MIGHT STILL BE USEFUL

7

PARTIALLY “DONE” MIGHT STILL BE USEFUL

7

RESPOND TO SECURITY ISSUES

At the time of disclosure, some 17% (around half
a million) of the Internet's secure web servers
certified by trusted authorities were believed to
be vulnerable to the attack, allowing theft of the
servers' private keys and users' session cookies
and passwords.

The Electronic Frontier Foundation, Ars Technica,
and Bruce Schneier all deemed the Heartbleed
bug "catastrophic". Forbes cybersecurity
columnist Joseph Steinberg wrote, "Some might
argue that [Heartbleed] is the worst vulnerability
found (at least in terms of its potential impact)
since commercial traffic began to flow on the
Internet.

https://en.wikipedia.org/wiki/Heartbleed

8

CODE MANAGEMENT
Working with your version control system

9

FEATURE BRANCHING

10

http://martinfowler.com/bliki/FeatureBranch.html

FEATURE BRANCHING

11

http://martinfowler.com/bliki/FeatureBranch.html

FEATURE BRANCHING

12

http://martinfowler.com/bliki/FeatureBranch.html

CODE MANAGEMENT

Recommended CI practices

13

CODE MANAGEMENT

Recommended CI practices

Everyone commits to trunk at least daily

13

CODE MANAGEMENT

Recommended CI practices

Everyone commits to trunk at least daily
Automated tests are run for every commit

13

CODE MANAGEMENT

Recommended CI practices

Everyone commits to trunk at least daily
Automated tests are run for every commit
Avoid branches

13

RELEASING
INCOMPLETE WORK
How to deliver faster than you can finish a feature

14

FEATURE TOGGLES

15

FEATURE TOGGLES

15

before

 function calculateTax(){
 // current implementation lives here
 }

FEATURE TOGGLES

15

before

 function calculateTax(){
 // current implementation lives here
 }

after

 function calculateTax(){
 var useNewAlgorithm = false;
 // useNewAlgorithm = true; // UNCOMMENT IF YOU ARE WORKING ON THE NEW SR ALGORITHM

 if(useNewAlgorithm){
 return enhancedSplineReticulation();
 }else{
 return oldFashionedSplineReticulation();
 }
 }

 function oldFashionedTaxCalculation(){
 // current implementation lives here
 }

 function enhancedTaxCalculation(){
 // TODO: implement better SR algorithm
 }

 Pete Hodgson - http://martinfowler.com/articles/feature-toggles.html

FEATURE TOGGLES

16

 Pete Hodgson - http://martinfowler.com/articles/feature-toggles.html

PIPELINES YOU
SHOULD BE
INCLUDING

17

SECURITY TESTING

18

SECURITY TESTING

Test before you commit

Have you included private keys? Authentication tokens?

18

SECURITY TESTING

Test before you commit

Have you included private keys? Authentication tokens?

Static Application Security Testing (SAST)

According to one Sonatype study “of the 106 component ‘parts’ used in a
typical application, on average 24 have known cyber vulnerabilities, which are
rated either critical or severe."

18

SECURITY TESTING

Test before you commit

Have you included private keys? Authentication tokens?

Static Application Security Testing (SAST)

According to one Sonatype study “of the 106 component ‘parts’ used in a
typical application, on average 24 have known cyber vulnerabilities, which are
rated either critical or severe."

Dynamic Application Security Testing (DAST)

Tools that run against your code are a good start, but they aren’t accessing
the application like a user.

18

PERFORMANCE TESTING

19

https://en.wikipedia.org/wiki/Software_performance_testing

PERFORMANCE TESTING

Load testing

Load testing is the simplest form of performance testing. A load test is usually conducted to
understand the behavior of the system under a specific expected load.

19

https://en.wikipedia.org/wiki/Software_performance_testing

PERFORMANCE TESTING

Load testing

Load testing is the simplest form of performance testing. A load test is usually conducted to
understand the behavior of the system under a specific expected load.

Stress testing

Stress testing is normally used to understand the upper limits of capacity within the system.

19

https://en.wikipedia.org/wiki/Software_performance_testing

PERFORMANCE TESTING

Load testing

Load testing is the simplest form of performance testing. A load test is usually conducted to
understand the behavior of the system under a specific expected load.

Stress testing

Stress testing is normally used to understand the upper limits of capacity within the system.

Soak testing

Soak testing, also known as endurance testing, is usually done to determine if the system can
sustain the continuous expected load.

19

https://en.wikipedia.org/wiki/Software_performance_testing

PERFORMANCE TESTING

Load testing

Load testing is the simplest form of performance testing. A load test is usually conducted to
understand the behavior of the system under a specific expected load.

Stress testing

Stress testing is normally used to understand the upper limits of capacity within the system.

Soak testing

Soak testing, also known as endurance testing, is usually done to determine if the system can
sustain the continuous expected load.

Spike testing

Spike testing is done by suddenly increasing the load generated by a very large number of
users, and observing the behavior of the system.

19

https://en.wikipedia.org/wiki/Software_performance_testing

PIPELINE STRATEGIES

Recommended practices

20

PIPELINE STRATEGIES

Recommended practices

20

Build (CI)

PIPELINE STRATEGIES

Recommended practices

20

Build (CI) Integrate

PIPELINE STRATEGIES

Recommended practices

20

Build (CI) Integrate Verify

PIPELINE STRATEGIES

Recommended practices

20

Build (CI) Integrate Verify Deploy

RUN AS MUCH AS POSSIBLE IN PARALLEL

21

Unit	Test Functional	
Test

Load	Test

Staging Production

Spike	Test

Stress	Test

Soak	Test

MANAGING RISK

22

DEPLOYMENT PATTERNS

23

DEPLOYMENT PATTERNS

Canary release

A technique to reduce the risk of introducing a new software version in
production by slowly rolling out the change to a small subset of users before
rolling it out to the entire infrastructure and making it available to everybody.

23

DEPLOYMENT PATTERNS

Canary release

A technique to reduce the risk of introducing a new software version in
production by slowly rolling out the change to a small subset of users before
rolling it out to the entire infrastructure and making it available to everybody.

Dark launching
The practice of deploying the very first version of a service into its production
environment, well before release, so that you can soak test it and find any
bugs before you make its functionality available to users.

23

http://martinfowler.com/bliki/CanaryRelease.html

http://www.informit.com/articles/article.aspx?p=1833567&seqNum=2

FEEDBACK LOOPS

24

FEEDBACK LOOPS

Create useful logging for everything

24

FEEDBACK LOOPS

Create useful logging for everything
Run (some of) your tests against production

24

FEEDBACK LOOPS

Create useful logging for everything
Run (some of) your tests against production

Configure monitoring alerts to make sure people
pay attention to them

24

OPTIMIZE FOR RECOVERY

25

OPTIMIZE FOR RECOVERY

Mean time between failures (MTBF) is the
predicted elapsed time between inherent failures
of a system during operation.

25

OPTIMIZE FOR RECOVERY

Mean time between failures (MTBF) is the
predicted elapsed time between inherent failures
of a system during operation.

Mean Time To Repair (MTTR) is a basic measure of
the maintainability of repairable items. It
represents the average time required to repair a
failed component or device.

25

https://en.wikipedia.org/wiki/Mean_time_to_repair
https://en.wikipedia.org/wiki/Mean_time_between_failures

SUMMARY

It’s not Continuous Delivery if you can’t deploy right now

Practice good CI habits

Use things like feature branches to deploy incomplete work

26

THANK YOU
To learn more about ThoughtWorks CD Products 
http://www.thoughtworks.com/products/

27

