MAKING TIME WITH VECTOR CLOCKS

Matthew Sackman
matthew@goshawkdb.io

https://goshawkdb.io/

1. Have you played with a NoSQL or NewSQL store?

1. Have you played with a NoSQL or NewSQL store?
2. Have you deployed a NoSQL or NewSQL store?

1. Have you played with a NoSQL or NewSQL store?
2. Have you deployed a NoSQL or NewSQL store?
3. Have you studied and know their semantics?

¢>g

£ hitps://aphyrcom/tags/Jepsen

QRs 7o > =

Blog Photography Code About

Jepsen: RethinkDB 2.2.3

reconfiguration
e ” we
fested _singie-document reads, s, - and
es. under e and

pauses. Rt

red a subte
Jepsen: MariaDB Galera
Cluster

Prvoust o epse,wo sow Chgns i oty
o at ¢ parttion. in this post, we

Jepsen: RethinkDB 2.1.5

in s Jagsn epot, wet vty R8s

funded by RethinkDB. and
with

accordance
RetinOB s an_opensource. horzontaly
<calanie_document siare._Similr o MonanD!

Jepsen: Chronos

Chonas s dsuted ask shadior (1, on)
s oo ronaqument e, o

ecmmn of Jepsen. we'l see how simple network
o can pomanerty | Beupt 3

Tead evtany commied st

ol custer exencs WysQL (ana ysoLs
fork. MariaDB) 1o clusters of machines, all of
i smon s e, 1 o5& 1000

Jepsen: Elasticsearch 1.5.0

Provausy, o Jspsn we demonstaied sae

n this post. we
fetum & Eastisearch, wheh koses s when
the network fais, nodes pauss, of processes
crash.

Nie months ago, in June 2014, we saw
Elasicsearch lose boin_updates and_inseried

. which has two flavors
of node: master nodes, and siave nodes.
Ornarly n Jepsen v rfr (o tese a5

Jepsen: MongoDB stale reads

In May of 2013, we showed that MongoDB 2.4.3
would lose acknowledged wies ai _all
consistency levels. Every write concer less than

acknowtedged writs, because when the
encountered a network error, it retumed a
i, not a faled, response o the client

documents_during

Jepsen: etcd and Consul

In the previous post, we ciscovered the potential

for data oss in RabbiMO clustrs. In this oft

requesied insiataion of the Jepsen saries, we'l

look 2t elcd a new contender In the CP

coordination senvice arena. Well also discuss

‘Consurs indings wit Jepsen

Like Zookeeper, ecd is designed to siore small
or

amours of suongy<orsten _sate

Strong consistency models

Network parttons are going to happen. Switches,
NICs, host hardware, operaling systems, disks,

vinualzation layers, and language runtimes, not

Happiy. that bug

Jepsen: RabbitMQ
RabbiQ

dstiouied message
queve, and

Jepsen: Redis redux

1 8 g e tnkat 2 e
peration n Redis: WALT. WAIT Is proposed as

an ennancement to Redis .epncanen proocol o

Jepsen: Percona XtraDB
Cluster

Percona’s CTO Vadim Tkachenko wiote a
« post

! ik Tacherko may_ have
misndosoad soma fmy e 0
et o up . P P he Maab s
o Pevcnna XuaDB Cluser, and wiould Tke o

sing exciusve wie lcks on ot
Jepsen: Aemspike
povousy on g,
Eiastcsearen's progress mexsmg s
s hrig ek patons. Tod we'lsee

Arasphe 554 an ACID. datace reat

vilentl to a basic partitor

Aerspks s 3 girperamance, dtiute
smemaies K s, ot ceryes
analyis,

Jepsen: Elasticsearch

o compreensi overve ofconecness
issues m e progress towards fiing some of
hese
Computational techniques in
Knossos

Earfer versions_of Jepsen found _glaring

Jepsen: Strangeloop Hangout

Since the Stangeloop taks won't be avalbie for
a few monins, | recorded a new version of the tak
2.2 Google Hangout.

_ First, consisténcy across THOSE operalions
s not part of our semantics,so | must dofiothing.

AG,

Second, in order for our SBIII&IIIIIGS 10 annlv, you IIIIISI
he a properly encansulalell transactmn |H|IIG|I you are Ilﬂl.

Third, these Semantics are mnre wllal
_Yyou'd t:all‘gllldelmes. than aclual rules.

TRADITIONAL DATABASE SEMANTICS

ACID

+ Atomic: an operation (transaction) either succeeds or aborts
completely - no partial successes

+ Consistent: constraints like uniqueness, foreign keys, etc are
honoured

 Durable: flushed to disk before the client can find out the result

TRADITIONAL DATABASE SEMANTICS

ACID

Atomic: an operation (transaction) either succeeds or aborts
completely - no partial successes

Consistent: constraints like uniqueness, foreign keys, etc are
honoured

Isolation: the degree to which operations in one transaction
can observe actions of concurrent transactions

Durable: flushed to disk before the client can find out the result

PostgreSQL:
Oracle 11g:

MS SQL Server:
MySQL InnoDB:

TRADITIONAL DATABASE SEMANTICS

Default isolation levels

TRADITIONAL DATABASE SEMANTICS

Default isolation levels

PostgreSQL: Read Committed
Oracle 11g: Read Committed

MS SQL Server: Read Committed
MySQL InnoDB:

TRADITIONAL DATABASE SEMANTICS

Default isolation levels

PostgreSQL: Read Committed
Oracle 11g: Read Committed
MS SQL Server: Read Committed
MySQL InnoDB: Repeatable Read

ISOLATION LEVELS

Strong-serializable

N

Linearizable Serializable
/ PN
Sequential Repeated Read Snapshot Isolation
/ /
Causal \MAV
\ y
PRANI/ \WFR Read Committed P-Ci

SN

RYW MR

SNAPSHOT ISOLATION

AS PER WIKIPEDIA

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction
itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

SNAPSHOT ISOLATION

AS PER WIKIPEDIA

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction
itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

Snapshot isolation is called “serializable” mode in Oracle.

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0{
y = 1 X = 1
} }

} +

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

t1then t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thent1

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y==0{
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:
t1]]t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:
t1]]t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation:
t1]]t2

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1

t2thentl: x:1, y:0
* Snapshot Isolation:

t1]]t2: x:1, y:1

SNAPSHOT ISOLATION

TROUBLE UP MILL

x, y := 0,0
func t1() { func t2(0) {
if x == 0 { if y ==0 {
y=1 x =1
} }
} }
* Serialized:

tithent2: x:0, y:1
t2thentl: x:1, y:0

* Snapshot Isolation: Write Skew
t1]]t2: x:1, y:1

DESIRED FEATURES

* General purpose transactions

DESIRED FEATURES

* General purpose transactions
* Strong serializability

DESIRED FEATURES

General purpose transactions
Strong serializability
Distribution

Automatic sharding
Horizontal scalability

o @

Q>

"Synfig Animation 1"

consequences.ogv
Media File (video/ogg)

ISOLATION LEVELS

Strong-serializable

N

Linearizable Serializable
/ \
Seque{ial Repeated Read Snapshot Isolation
7
Causal \MAV
\ /
PRAM/ \WFR Read Committed P-Cl

SN

RYW MR

ISOLATION LEVELS

CP-system Strong-serializable
Linearizable Serializable
Sequential Repeated Read Snapshot Isolation
(A?;;ys;erlz\ Causal . G 7 MAV
with sticky
sessions) /\\ \\/
PRAM .-~ WFR Read Committed P-Cl

/I\

RYW /MR AP-system

CAP

Possibility of Partitions = —(Consistency A Availability)

CAP

Node A

Possibility of Partitions = —(Consistency A Availability)

Node B

CAP

Possibility of Partitions = —(Consistency A Availability)

"CAP"

cap.ogv
Media File (video/ogg)

CAP

Possibility of Partitions = —(Consistency A Availability)

"CAP"

capPartition.ogv
Media File (video/ogg)

CAP

Possibility of Partitions = —(Consistency A Availability)

Node A

Node B

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

© o O
O O

Cluster Size = 2F+1
13 = 2F+1 O
O 6=F
Majority =F + 1

O e
o O o

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

©C @ O
O O

Cluster Size = 2F+1
13 = 2F+1 O
O 6=F
Majority =F + 1

O)
o O o

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

o O
X @)

Cluster Size = 2F+1
13 = 2F+1 O
X 6=F
Majority =F + 1

X)
g ¥ 0

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

o O
@) @)

Cluster Size = 2F+1
13 = 2F+1 O
X 6=F
Majority =F + 1

O)
O ¥ 0

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

@ 90 ©
@) @

Cluster Size = 2F+1
13 = 2F+1 .
@ 6=F
Majority =F + 1

O)
@ © o

ACHIEVING CONSISTENCY

CoLOURS INDICATE CONNECTED NODES

B g &
X X

Cluster Size = 2F+1
13 = 2F+1 '
X 6=F
Majority =F + 1

%) T
R ¥ ®

LLEARNINGS I

* Strong serializability requires Consistency, so must sacrifice
Availability

LLEARNINGS I

* Strong serializability requires Consistency, so must sacrifice
Availability

+ To achieve Consistency, only accept operations if connected to
majority

LLEARNINGS I

* Strong serializability requires Consistency, so must sacrifice
Availability

+ To achieve Consistency, only accept operations if connected to
majority

* If cluster size is 2F + 1 then we can withstand no more than F
failures

MODIFYING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©
© ©

Cluster Size = 2F+1
13 = 2F+1 @
© 6=F
Majority =F + 1

® e
© © ©

MODIFYING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©

© ©

Cluster Size = 2F+1

13 = 2F+1 @
© 6=F

Majority =F + 1

e
© © ©

MODIFYING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©

© ©

Cluster Size = 2F+1
13 = 2F+1 @
© 6=F
Majority =F + 1

% e
© © ©

MODIFYING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©

© ©

Cluster Size = 2F+1

12 : ;F+1 @

Majority =F + 1

=7

MODIFYING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©

© ©

Cluster Size = 2F+1
13 = 2F+1 @
029 6=F
Majority =F + 1

% %
® ¥ ®

MODIFYING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©

©

Cluster Size = 2F+1
13 = 2F+1 @
029 6=F
Majority =F + 1

% %
® ¥ ®

LLEARNINGS 2

Strong serializability requires Consistency, so must sacrifice
Availability

To achieve Consistency, only accept operations if connected to
majority

If cluster size is 2F + 1 then we can withstand no more than F
failures

Writes must go to F + 1 nodes

READING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©

©

Cluster Size = 2F+1

12 : ;F+1 @

Majority =F + 1

=7

READING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®© @ ©
@ B @

Cluster Size = 2F+1

13 = 2F+1 @
© 6=F

Majority =F + 1

e
© © @

READING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®@ ¢ ©
@ B o©

Cluster Size = 2F+1
13 = 2F+1 @
® 6=F
Majority =F + 1

® e
®@ © ©

READING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

®@ @ O
@ B o©

Cluster Size = 2F+1
13 = 2F+1 @
® 6=F
Majority =F + 1

® e
®@ © ©

READING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

® o ©
@ = o

Cluster Size = 2F+1
13 = 2F+1

® P
Majority =F + 1

® e
®@ © o

READING VALUES

COLOURS INDICATE EXTENT OF TXN WRITE

® o ©
@ = o

Cluster Size = 2F+1
13 = 2F+1

® P
Majority =F + 1

® e
®@ © o

LEARNINGS 3

Strong serializability requires Consistency, so must sacrifice
Availability

To achieve Consistency, only accept operations if connected to
majority

If cluster size is 2F 4+ 1 then we can withstand no more than F
failures

Writes must go to F + 1 nodes
Reads must read from F + 1 nodes and be able to order results

o @

Q>

"Synfig Animation 1"

distributedTxns.ogv
Media File (video/ogg)

TXN PROCESSING IN DISTRIBUTED DATABASES

1. Client submits txn

TXN PROCESSING IN DISTRIBUTED DATABASES

1. Client submits txn
2. Node(s) vote on txn

TXN PROCESSING IN DISTRIBUTED DATABASES

1. Client submits txn
2. Node(s) vote on txn
3. Node(s) reach consensus on txn outcome

TXN PROCESSING IN DISTRIBUTED DATABASES

1. Client submits txn

2. Node(s) vote on txn

3. Node(s) reach consensus on txn outcome
4. Client is informed of outcome

TXN PROCESSING IN DISTRIBUTED DATABASES

1. Client submits txn

2. Node(s) vote on txn

3. Node(s) reach consensus on txn outcome
4. Client is informed of outcome

Most important thing is all nodes agree on the order of transactions

TXN PROCESSING IN DISTRIBUTED DATABASES

1. Client submits txn

2. Node(s) vote on txn

3. Node(s) reach consensus on txn outcome
4. Client is informed of outcome

Most important thing is all nodes agree on the order of transactions
(focus for the rest of this talk!)

LLEADER BASED ORDERING

Clients Leader Nodes
O
@
O
O @ o
O
O
O

LLEADER BASED ORDERING

"Zookeeper"

orderingZookeeper.ogv
Media File (video/ogg)

LLEADER BASED ORDERING

Clients Leader Nodes

LLEADER BASED ORDERING

* Only leader votes on whether txn commits or aborts

LLEADER BASED ORDERING

* Only leader votes on whether txn commits or aborts
* Therefore leader must know everything

LLEADER BASED ORDERING

* Only leader votes on whether txn commits or aborts
* Therefore leader must know everything

+ If leader fails, a new leader will be elected from remaining
nodes

LLEADER BASED ORDERING

Only leader votes on whether txn commits or aborts
Therefore leader must know everything

If leader fails, a new leader will be elected from remaining
nodes

Therefore all nodes must know everything

LLEADER BASED ORDERING

Only leader votes on whether txn commits or aborts
Therefore leader must know everything

If leader fails, a new leader will be elected from remaining
nodes

Therefore all nodes must know everything
Fine for small clusters, but scaling issues when clusters get big

CLIENT CLOCK BASED ORDERING

Clients Nodes
O
@
O
O O
O
O
O

CLIENT CLOCK BASED ORDERING

"Zookeeper"

orderingSpanner.ogv
Media File (video/ogg)

CLIENT CLOCK BASED ORDERING

Clients Nodes

CLIENT CLOCK BASED ORDERING

* Nodes receive txns and must vote on txn outcome and then
consensus must be reached (not shown)

CLIENT CLOCK BASED ORDERING

* Nodes receive txns and must vote on txn outcome and then
consensus must be reached (not shown)

+ Clients are responsible for applying an increasing clock value
to txns

CLIENT CLOCK BASED ORDERING

* Nodes receive txns and must vote on txn outcome and then
consensus must be reached (not shown)

+ Clients are responsible for applying an increasing clock value
to txns

« If a client’s clock races then it can prevent other clients from
getting txns submitted

CLIENT CLOCK BASED ORDERING

Nodes receive txns and must vote on txn outcome and then
consensus must be reached (not shown)

Clients are responsible for applying an increasing clock value
to txns

If a client’s clock races then it can prevent other clients from
getting txns submitted

So must be very careful to try and keep clocks running at the
same rate

CLIENT CLOCK BASED ORDERING

Nodes receive txns and must vote on txn outcome and then
consensus must be reached (not shown)

Clients are responsible for applying an increasing clock value
to txns

If a client’s clock races then it can prevent other clients from
getting txns submitted

So must be very careful to try and keep clocks running at the
same rate

No possibility to reorder transactions at all to maximise
commits

SYNTAX

m receive message m (sender unspecified)
Im send message m (destination unspecified)
t3 transaction with id 3

rix1] reads x at version 1
w[y] writes some value toy

Vx2y1 vector clock with x=2, y=1

Vi < Vy £Vx € dom(Vq U V3) : Vi[x] < Va[x]
/\Hy S dOl’Il(V1 U V2) W [y] < Vz[y]

SIMPLE TRANSACTION

initial state

x0; Vx1 time yO0; Vy1

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
wix] _ write of x

SIMPLE TRANSACTION

initial state

x0; Vx1 time yO0; Vy1

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
wix] _ write of x

SIMPLE TRANSACTION

initial state
x0; Vx1 time yO0; Vy1
;12 Vy1; Vy2
? receive
! send
t3 txn 3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
wix] _ write of x

SIMPLE TRANSACTION

initial state
x0; Vx1 time yO0; Vy1
;112 Vx1; V2 ;162 Vy1; Vy2
? receive
! send
t3 txn 3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
wix] _ write of x

SIMPLE TRANSACTION

initial state
x0; Vx1 time yO0; Vy1
;112 Vx1; Vx2 ;12 Vy1; Vy2 Vx1y1
? receive
! send
t3 txn3
V Vector Clock
x0 xatvsn 0
r[x0] read of x
wix] _ write of x

SIMPLE TRANSACTION

initial state
x0; Vx1 time yO0; Vy1

;112 Vx1; Vx2 ;12 Vy1; Vy2 Vx1y1
? receive

i i ! send

t3 txn3

V Vector Clock

x0 xatvsn 0

r[x0] read of x

wix] _ write of x

SIMPLE TRANSACTION

initial state
x0; Vx1 time yO0; Vy1

;112 Vx1; Vx2 ;12 Vy1; Vy2 Vx1y1
? receive

; X0; Vx2y1 i ! send

t3 txn3

V Vector Clock

x0 xatvsn 0

r[x0] read of x

wix] _ write of x

SIMPLE TRANSACTION

initial state
x0; Vx1 time yO0; Vy1

;112 Vx1; Vx2 ;12 Vy1; Vy2 Vx1y1
? receive

; X0; Vx2y1 1Y2; Vx1y2 ! send

t3 txn3

V Vector Clock

x0 xatvsn 0

r[x0] read of x

wix] _ write of x

Two WRITES

x0; Vx1 y0; Vy1

t1 wix]wly]
t2 wixiwly]

? receive
! send
t3 txn 3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] write of x

Two WRITES

x0; Vx1 y0; Vy1
7t1 wix]; 't1 Vx1; Vx2 72 wlyl; 't2 Vy1; Vy2 t1 wix]wly]
t2 wixiwly]
? receive
! send
3 txn 3

V Vector Clock
x0 xatvsn 0
rx0] read of x
w[x] write of x

Two WRITES

x0; Vx1 yO0; Vy1
2t1T wix]; 111 Vx1; Vx2 22 wlyl; 't2 Vy1; Vy2 t1 wix]wly]
7t2 wx]; 112 Vx2; Vx3 27t1T wlyl; 't1 Vy2; Vy3 t2 wixiwly]
? receive
! send
3 txn 3

V Vector Clock
x0 xatvsn 0
rx0] read of x
w[x] write of x

Two WRITES

x0; Vx1 yO0; Vy1
2t1T wix]; 111 Vx1; Vx2 22 wlyl; 't2 Vy1; Vy2 t1T wixlwly]l Vx1y2
712 wix]; 't2 Vx2; Vx3 27t1T wlyl; 't1 Vy2; Vy3 2 wixlwly] Vx2y1
? receive
! send
3 txn 3

V Vector Clock
x0 xatvsn 0
rx0] read of x
wilx] _ write of x

Two WRITES

x0; Vx1 yO0; Vy1
2t1T wix]; 111 Vx1; Vx2 22 wlyl; 't2 Vy1; Vy2 t1T wixlwly]l Vx1y2
712 wix]; 't2 Vx2; Vx3 27t1T wlyl; 't1 Vy2; Vy3 2 wixlwly] Vx2y1
? receive
2t1 Vx1y2; x1; Vx3y2 t1Vx1y2;y1;Vx1y3 ! send
3 txn 3

V Vector Clock
x0 xatvsn 0
rx0] read of x
w[x] write of x

x0; Vx1
71 wix]; 't1 Vx1; Vx2
712 wix]; 't2 Vx2; Vx3

2t1 Vx1y2; x1; Vx3y2
7t2 Vx2y1; x?; Vx3y2

yO0; Vy1

22 wlyl; 't2 Vy1; Vy2
27t1T wlyl; 't1 Vy2; Vy3

t1Vx1y2;y1;Vx1y3
t2Vx2y1;y?; Vx2y3

Two WRITES

tT wixlwly] Vxly2
2 wixlwly] Vx2y1

? receive
! send
t3 txn 3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] write of x

THREE WRITES

X0; Vx1 yo; Vy1

t1 wixIwly]

t2 wlx]

t3 wixiwly]
? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w(x] write of x

THREE WRITES

x0; Vx1 y0; Vy1
7t3 wix]; 13 Vx1; Vx2 t1 wixIwly]
7t2 wix]; 12 Vx2; Vx3 12 wix]
7t1 wix]; 't1 VX3; Vx4 t3 wixlwly]

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

THREE WRITES

x0; Vx1 yO0; Vy1
73 wix]; 't3 Vx1; Vx2 27t1 wlyl; 't1 Vy1; Vy2 t1 wixlwly]
12 wix]; 't2 Vx2; Vx3 7t3 wly]; 't3 Vy2; Vy3 t2 wix]
261 wix]; 1t1 Vx3; Vx4 t3 wixlwly]

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

THREE WRITES

x0; Vx1 y0; Vy1
73 wix]; 't3 Vx1; Vx2 27t1 wlyl; 't1 Vy1; Vy2 t1 wixlwly] Vx3y1
12 wix]; 't2 Vx2; Vx3 7t3 wly]; 't3 Vy2; Vy3 t2 wix] Vx2
261 wix]; 1t1 Vx3; Vx4 t3 wixlwly]l Vxly2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

x0; Vx1

27t3 wix]; 't3'Vx1; Vx2
7t2 wix]; 12 Vx2; Vx3
2t1 wix]; 1t1 Vx3; Vx4

yo; Vy1

27t1 wlyl; 't1 Vy1; Vy2
2t3 wly]; 't3 Vy2; Vy3

7t3 Vx1y2;y3;Vx1y3
?t1Vx3y1;y3; Vx3y3

THREE WRITES

t1 wixlwly]l Vx3yl1
t2 wix] Vx2
t3wixlwly]l Vxly2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

x0; Vx1

27t3 wix]; 't3'Vx1; Vx2
7t2 wix]; 12 Vx2; Vx3
2t1 wix]; 1t1 Vx3; Vx4

yo; Vy1

27t1 wlyl; 't1 Vy1; Vy2
2t3 wly]; 't3 Vy2; Vy3

7t3 Vx1y2;y3;Vx1y3
?t1Vx3y1;y3; Vx3y3

t1<t3

THREE WRITES

t1 wixlwly]l Vx3yl1
t2 wix] Vx2
t3wixlwly]l Vxly2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

x0; Vx1

27t3 wix]; 't3'Vx1; Vx2
7t2 wix]; 12 Vx2; Vx3
2t1 wix]; 1t1 Vx3; Vx4

?t3 Vx1y2; x3; Vx4y2
7t2 Vx2; x2; Vx4y2
261 Vx3y1; x1; Vx4y2

yo; Vy1

27t1 wlyl; 't1 Vy1; Vy2
2t3 wly]; 't3 Vy2; Vy3

7t3 Vx1y2;y3;Vx1y3
?t1Vx3y1;y3; Vx3y3

t1<t3

THREE WRITES

t1 wixlwly]l Vx3yl1
t2 wix] Vx2
t3wixlwly]l Vxly2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

x0; Vx1

27t3 wix]; 't3'Vx1; Vx2
7t2 wix]; 12 Vx2; Vx3
2t1 wix]; 1t1 Vx3; Vx4

?t3 Vx1y2; x3; Vx4y2
7t2 Vx2; x2; Vx4y2
261 Vx3y1; x1; Vx4y2

B3<t2<tl

yo; Vy1

27t1 wlyl; 't1 Vy1; Vy2
2t3 wly]; 't3 Vy2; Vy3

7t3 Vx1y2;y3;Vx1y3
?t1Vx3y1;y3; Vx3y3

t1<t3

THREE WRITES

t1 wixlwly]l Vx3yl1
t2 wix] Vx2
t3wixlwly]l Vxly2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn0
r[x0] read of x
w[x] _ write of x

THE DuMB APPROACH DOESN’T WORK

+ Changing state when receiving a txn seems to be a very bad
idea

THE DuMB APPROACH DOESN’T WORK

+ Changing state when receiving a txn seems to be a very bad
idea

* Maybe only change state when receiving the outcome of a
vote

THE DuMB APPROACH DOESN’T WORK

+ Changing state when receiving a txn seems to be a very bad
idea

* Maybe only change state when receiving the outcome of a
vote

* And don't vote on txns until we know it’s safe to do so

NEwW IDEAS

 Divide time into frames. First half of frame is reads, second half
writes.

NEwW IDEAS

Divide time into frames. First half of frame is reads, second half
writes.

Within a frame, we don't care about order of reads,
but all reads must come after writes of previous frame,
all writes must come after reads of this frame,

all writes must be totally ordered within the frame - must know
which write comes last.

N-1

N

Frame

N+1

x8; Vx6

VX6

y9; Vy8

FrRAMES & DEPENDENCIES

z7;Vz3

N-1

N

Frame

N+1

x8; Vx6

VX6

y9; Vy8

FrRAMES & DEPENDENCIES

z7;Vz3

t1 r[x8]rly9]
12 r[x8]
t3 r[x8]wlz]

N-1

N

Frame

N+1

x8; Vx6

t3 r[x8}
12 r[x8]
t1 r[x8}

FrRAMES & DEPENDENCIES

y9; Vy8 z7;Vz3
VX6
....................................... 3 wlz] t1 r[x8]rly9]
2 r[x8]
--------------- 1 rly9] t3 r[x8]wlz]

N-1

N

Frame

N+1

x8; Vx6

t3 r[x8}
12 r[x8]
t1 r[x8}

FrRAMES & DEPENDENCIES

y9; Vy8 z7;Vz3
VX6
....................................... 3 wiz] t1 r[x8]rly9] Vx6y8
t2 r[x8] Vx6
"""""""" 1 rly9] t3 r[x8lwlz]l Vx6z3

N-1

N

Frame

N+1

x8; Vx6

t3 r[x8}
12 r[x8]
t1 r[x8}

FrRAMES & DEPENDENCIES

y9; Vy8 z7;Vz3
VX6
....................................... 3 wiz] t1 r[x8]rly9] Vx6y8
t2 r[x8] Vx6
"""""""" 1 rly9] t3 r[x8lwlz]l Vx6z3

N-1

N

Frame

N+1

FrRAMES & DEPENDENCIES

x8; Vx6 y9; Vy8 z7;Vz3
VX6
B KB - 3 wlz] t1r[x8]rly9] Vx6y8
12 r[x8] 12 r[x8] Vx6
1 r[x8F-------eeeee- 11 r[y9] t3 r[x8lwlz] Vx6z3
......... Vx6y8z4
t4 wlylrly9]
t5 wixlwlz]
t6 w(x]

N-1

N

Frame

N+1

x8; Vx6 y9; Vy8

3 X8}

12 r[x8]
1 r[X8F---vrvveeieene 1 rly9]

FrRAMES & DEPENDENCIES

t1 r[x8Irly9] Vx6y8
2 r[x8] Vx6
t3r[x8lw[z] Vx6z3

t4 wlylrly9]
t5 wixlwlz]
t6 wix]

N-1

N

Frame

N+1

x8; Vx6

3 X8}

12 r[x8]
1 r[X8F---vrvveeieene 1 rly9]

FrRAMES & DEPENDENCIES

t1 r[x8]rly9]
12 r[x8]
t3 r[x8]wlz]

t4 wlylrly9]
t5 wixlwlz]
t6 wix]

Vx6y8
Vx6
Vx62z3

Vx6y8z4
Vx6y8z?
Vx6y8z4

CALCULATING THE WRITE CLOCK FROM READS

* Merge all read clocks together

+ Add 1 to result for every object that was written by txns in our
frame’s reads

CALCULATING THE FRAME WINNER

& NEexT FRAME’S READ CLOCK

Partition write results by local clock elem, and within that by
txn id

Each clock inherits missing clock elems from above

Then sort each partition first by clock (now all same length),
then by txn id

Next frame starts with winner’s clock, +1 for all writes

CALCULATING THE FRAME WINNER

& NEexT FRAME’S READ CLOCK

Partition write results by local clock elem, and within that by
txn id

Each clock inherits missing clock elems from above

Then sort each partition first by clock (now all same length),
then by txn id

Next frame starts with winner’s clock, +1 for all writes
Guarantees no concurrent vector clocks (proof in progress!)

CALCULATING THE FRAME WINNER

& NEexT FRAME’S READ CLOCK

Partition write results by local clock elem, and within that by
txn id

Each clock inherits missing clock elems from above

Then sort each partition first by clock (now all same length),
then by txn id

Next frame starts with winner’s clock, +1 for all writes
Guarantees no concurrent vector clocks (proof in progress!)
Many details elided! (deadlock freedom, etc)

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
21 wix]; 111 Vx1 t1: wx]wl[z]
72 wx]; 1t2 Vx1 72 wlyl; 't2 vyl t2: wixiwly]

73 wlyl; 't3 Vy1 3 wlz]; 1t3Vz1 t3:wlylw[z]

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
7t1 wix]; 't1Vx1 t1: wixlwl(z]
2762 wix]; 112 Vx1 72 wlyl; 112 Vy1 t2: wixiwly]
2t3 wly]; 't3 Vy1 3 w(z]; t3Vz1 t3:wlylw[z] Vylzl
?t3 Vyl1z1 t3 Vylz1
frame z[3]; Vy2z2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
7t1 wix]; 't1Vx1 t1: wixlwl(z]
2712 wix]; 't2 Vx1 2 wly]; 't2 Vy1 t2: wixlwly] Vxly1
72 Vx1y1 73 wly]; 't3 Vy1 3 w(z]; t3Vz1 t3:wlylw[z] Vylzl
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
7t1 wix]; 't1Vx1 t1: wixlwl(z]
2712 wix]; 't2 Vx1 2 wly]; 't2 Vy1 t2: wixlwly] Vxly1
72 Vx1y1 73 wly]; 't3 Vy1 3 w(z]; t3Vz1 t3:wlylw[z] Vylzl
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

71 wlz]; 1t1 Vy2z2

? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
2761 wix]; 111 Vx1 t1: wixlw(z] Vx1y2z2
212 wix]; 112 Vx1 72 wly]; 't2 Vy1 t2: wixlwly] Vxly1
72 Vxly1 73 wly]; t3\Vy1 3wzl 13Vz1 t3:wlylwlz] Vylzi
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

71 wlz]; 1t1 Vy2z2

?t1 Vxly2z2 ?t1 Vxly2z2
? receive
! send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
2761 wix]; 111 Vx1 t1: wixlw(z] Vx1y2z2
212 wix]; 112 Vx1 72 wly]; 't2 Vy1 t2: wixlwly] Vxly1
72 Vxly1 73 wly]; t3\Vy1 3wzl 13Vz1 t3:wlylwlz] Vylzi
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

71 wlz]; 1t1 Vy2z2

?t1 Vxly2z2 ?t1 Vxly2z2
? receive
2<3? 3<1 | send
t3 txn3

V Vector Clock
x0 xatvsn 0
r[x0] read of x
w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
2761 wix]; 111 Vx1 t1: wixlw(z] Vx1y2z2
2762 wix]; 112 Vx1 2 wly]; 't2 Vy1 t2: wixlwly] Vxly1
72 Vxly1 73 wly]; t3\Vy1 M3 wlz]; t3Vzl t3:wlylwlz]l Vylzl
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

21 wiz]; 1t1 Vy2z2

1 Vxly2z2 71 Vxly2z2

? receive

2<3? 3<1 | send

t3 txn3

V Vector Clock

tZVX1y1 x0 xatvsn 0

t3V ylzl rx0] read of x

w[x] _write of x

TRANSITIVE VECTOR CLOCKS

x0; VX1 yO0; Vy1 z0; Vz1
2761 wix]; 111 Vx1 t1: wixlw(z] Vx1y2z2
2762 wix]; 112 Vx1 2 wly]; 't2 Vy1 t2: wixlwly] Vxly1
72 Vxly1 73 wly]; t3\Vy1 M3 wlz]; t3Vzl t3:wlylwlz]l Vylzl
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

21 wiz]; 1t1 Vy2z2

1 Vxly2z2 71 Vxly2z2
2<3 3<1 P e
t3 txn3
V Vector Clock
tZVX1y1 x0 xatvsn 0
t3Vxlylz1 rx0] read of x
w[x] _write of x

x0; VX1

21 wix]; 111 Vx1
2712 wix]; 't2 Vx1
2 Vx1yl

?t1 Vxly2z2
2<1?

t1Vx1y2z2
2 Vx1y1

TRANSITIVE VECTOR CLOCKS

yO0; Vy1 z0; Vz1
t1: wixlw(z] Vxl1y2z2
72 wly]; 't2 Vy1 t2: wixlwly] Vxly1
23 wly]; 't3 Vy1 3wz t3Vzl t3:wlylw(z] Vylzl
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

71 wlz]; 1t1 Vy2z2
71 Vxly2z2

7 -
2<3 3<1 \ R
t3 txn3

V Vector Clock

tZVX1y1 x0 xatvsn 0
t3Vxlylz1 rx0] read of x
w[x] _write of x

x0; VX1

21 wix]; 111 Vx1
2712 wix]; 't2 Vx1
2 Vx1yl

?t1 Vxly2z2
2<1

t1Vx1y2z2
t2Vx1y1z2

TRANSITIVE VECTOR CLOCKS

yO0; Vy1 z0; Vz1
t1: wixlw(z] Vxl1y2z2
72 wly]; 't2 Vy1 t2: wixlwly] Vxly1
23 wly]; 't3 Vy1 3wz t3Vzl t3:wlylw(z] Vylzl
?t3 Vyl1z1 t3 Vylz1
72 Vx1y1 frame z[3]; Vy2z2

71 wlz]; 1t1 Vy2z2
71 Vxly2z2

7 -
2<3 3<1 \ R
t3 txn3

V Vector Clock

tZVX1y1 x0 xatvsn 0
t3Vxlylz1 rx0] read of x
w[x] _write of x

SHRINKING VECTOR CLOCKS

 Hardest part of Paxos is garbage collection

SHRINKING VECTOR CLOCKS

 Hardest part of Paxos is garbage collection

* Need additional messages to determine when Paxos instances
can be deleted

SHRINKING VECTOR CLOCKS

 Hardest part of Paxos is garbage collection

* Need additional messages to determine when Paxos instances
can be deleted

+ We can use these to also express:
You will never see any of these vector clock elems again

SHRINKING VECTOR CLOCKS

Hardest part of Paxos is garbage collection

Need additional messages to determine when Paxos instances
can be deleted

We can use these to also express:
You will never see any of these vector clock elems again

Therefore we can remove matching elems from vector clocks!

Many more details elided!

CONCLUSIONS

Vector clocks capture dependencies and causal relationship
between transactions

CONCLUSIONS

Vector clocks capture dependencies and causal relationship
between transactions
Plus we always add transactions into the youngest frame

CONCLUSIONS

Vector clocks capture dependencies and causal relationship
between transactions
Plus we always add transactions into the youngest frame
Which gets us Strong Serializability

CONCLUSIONS

No leader, so no potential bottleneck

CONCLUSIONS

No leader, so no potential bottleneck
No wall clocks, so no issues with clock skews

CONCLUSIONS

No leader, so no potential bottleneck
No wall clocks, so no issues with clock skews
Can separate F from cluster size,

CONCLUSIONS

No leader, so no potential bottleneck
No wall clocks, so no issues with clock skews
Can separate F from cluster size,
Which gets us horizontal scalability

CONCLUSIONS

REFERENCES (1)

Interval Tree Clocks - Paulo Sérgio Almeida, Carlos Baquero,
Victor Fonte

Highly available transactions: Virtues and limitations - Bailis et
al

Coordination avoidance in database systems - Bailis et al

k-dependency vectors: A scalable causality-tracking protocol -
Baldoni, Melideo

Multiversion concurrency control-theory and algorithm:s -
Bernstein, Goodman

Serializable isolation for snapshot databases - Cahill, Rohm,
Fekete

Paxos made live: an engineering perspective - Chandra,
Griesemer, Redstone

REFERENCES (2)

Consensus on transaction commit - Gray, Lamport
Spanner: Google’s globally distributed database - Corbett et al

Faster generation of shorthand universal cycles for
permutations - Holroyd, Ruskey, Williams

s-Overlap Cycles for Permutations - Horan, Hurlbert

Universal cycles of k-subsets and k-permutations - Jackson
Zab: High-performance broadcast for primary-backup systems
- Junqueira, Reed, Serafini

Time, clocks, and the ordering of events in a distributed system
- Lamport

REFERENCES (3)

The part-time parliament - Lamport
Paxos made simple - Lamport

Consistency, Availability, and Convergence - Mahajan, Alvisi,
Dahlin

Notes on Theory of Distributed Systems - Aspnes

In search of an understandable consensus algorithm - Ongaro,
Ousterhaut

Perfect Consistent Hashing - Sackman

The case for determinism in database systems - Thomson,
Abadi

SRR
N “‘
' R,
SF S

K
N
&

‘ , J/ ‘\Q“%;\;)\\'
R R
.+~ GoshawkDB

Distributed databases are FUN!
https://goshawkdb.io/

