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1. Have you played with a NoSQL or NewSQL store?

2. Have you deployed a NoSQL or NewSQL store?
3. Have you studied and know their semantics?
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T D S

ACID

• Atomic: an operation (transaction) either succeeds or aborts
completely - no partial successes

• Consistent: constraints like uniqueness, foreign keys, etc are
honoured

• Isolation: the degree to which operations in one transaction
can observe actions of concurrent transactions

• Durable: flushed to disk before the client can find out the result
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Default isolation levels

• PostgreSQL:

Read Committed

• Oracle 11g:

Read Committed

• MS SQL Server:

Read Committed

• MySQL InnoDB:

Repeatable Read
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S I
 W

“Snapshot isolation is a guarantee that all reads made in a transaction
will see a consistent snapshot of the database and the transaction

itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot.”

Snapshot isolation is called “serializable” mode in Oracle.
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S I
  

x, y := 0,0

 func t1() {
 if x == 0 {
 y = 1
 }
 }

func t2() {
if y == 0 {

x = 1
}

}

• Serialized:
t1 then t2: x:0, y:1
t2 then t1: x:1, y:0

• Snapshot Isolation:

Write Skew

t1 || t2: x:1, y:1
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CAP

Possibility of Partitions =⇒ ¬(Consistency ∧ Availability)
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L 

• Strong serializability requires Consistency, so must sacrifice
Availability

• To achieve Consistency, only accept operations if connected to
majority

• If cluster size is 2F + 1 then we can withstand no more than F
failures

• Writes must go to F + 1 nodes

• Reads must read from F + 1 nodes and be able to order results
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L 

• Strong serializability requires Consistency, so must sacrifice
Availability

• To achieve Consistency, only accept operations if connected to
majority

• If cluster size is 2F + 1 then we can withstand no more than F
failures

• Writes must go to F + 1 nodes

• Reads must read from F + 1 nodes and be able to order results
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1. Client submits txn

2. Node(s) vote on txn
3. Node(s) reach consensus on txn outcome
4. Client is informed of outcome

Most important thing is all nodes agree on the order of transactions
(focus for the rest of this talk!)
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• Nodes receive txns and must vote on txn outcome and then
consensus must be reached (not shown)

• Clients are responsible for applying an increasing clock value
to txns

• If a client’s clock races then it can prevent other clients from
getting txns submitted

• So must be very careful to try and keep clocks running at the
same rate

• No possibility to reorder transactions at all to maximise
commits
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S

V1 < V2 ,∀x ∈ dom(V1 ∪ V2) : V1[x] ≤ V2[x]

∧∃y ∈ dom(V1 ∪ V2) : V1[y] < V2[y]
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• Changing state when receiving a txn seems to be a very bad
idea

• Maybe only change state when receiving the outcome of a
vote

• And don’t vote on txns until we know it’s safe to do so
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• Divide time into frames. First half of frame is reads, second half
writes.

• Within a frame, we don’t care about order of reads,

• but all reads must come after writes of previous frame,

• all writes must come after reads of this frame,

• all writes must be totally ordered within the frame - must know
which write comes last.
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• Merge all read clocks together

• Add 1 to result for every object that was written by txns in our
frame’s reads
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& N F’ R C

• Partition write results by local clock elem, and within that by
txn id

• Each clock inherits missing clock elems from above

• Then sort each partition first by clock (now all same length),
then by txn id

• Next frame starts with winner’s clock, +1 for all writes

• Guarantees no concurrent vector clocks (proof in progress!)

• Many details elided! (deadlock freedom, etc)
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• Hardest part of Paxos is garbage collection

• Need additional messages to determine when Paxos instances
can be deleted

• We can use these to also express:
You will never see any of these vector clock elems again

• Therefore we can remove matching elems from vector clocks!

• Many more details elided!
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R ()

• Interval Tree Clocks - Paulo Sérgio Almeida, Carlos Baquero,
Victor Fonte

• Highly available transactions: Virtues and limitations - Bailis et
al

• Coordination avoidance in database systems - Bailis et al

• k-dependency vectors: A scalable causality-tracking protocol -
Baldoni, Melideo

• Multiversion concurrency control-theory and algorithms -
Bernstein, Goodman

• Serializable isolation for snapshot databases - Cahill, Röhm,
Fekete

• Paxos made live: an engineering perspective - Chandra,
Griesemer, Redstone



R ()

• Consensus on transaction commit - Gray, Lamport

• Spanner: Google’s globally distributed database - Corbett et al

• Faster generation of shorthand universal cycles for
permutations - Holroyd, Ruskey, Williams

• s-Overlap Cycles for Permutations - Horan, Hurlbert

• Universal cycles of k-subsets and k-permutations - Jackson

• Zab: High-performance broadcast for primary-backup systems
- Junqueira, Reed, Serafini

• Time, clocks, and the ordering of events in a distributed system
- Lamport



R ()

• The part-time parliament - Lamport

• Paxos made simple - Lamport

• Consistency, Availability, and Convergence - Mahajan, Alvisi,
Dahlin

• Notes on Theory of Distributed Systems - Aspnes

• In search of an understandable consensus algorithm - Ongaro,
Ousterhaut

• Perfect Consistent Hashing - Sackman

• The case for determinism in database systems - Thomson,
Abadi



Distributed databases are FUN!
https://goshawkdb.io/


