Startup Machine Learning:
Bootstrapping a fraud
detection system

Michael Manapat
Stripe
@mimanapat

* About me: Engineering Manager of the
Machine Learning Products Team at Stripe

* About Stripe: Payments infrastructure for the
internet

https://api.stripe.com/vl/charges \
sk_test_BQokikJOvBiI2HlWgH401fQ2: \
amount=400 \

currency=usd \

"description=Charge for test@example.com" \
"sourcelobject]=card" \

"source[number]=4242424242424242" \ 2
"source[exp_month]=12" \ N ><\
"source[exp_year]=2016" \ ——

"sourcel[cvc]=123"

Fraud

e Card numbers are stolen by
hacking, malware, etc.

 "Dumps” are sold in “carding”
forums

e Fraudsters use numbers in
dumps to buy goods, which
they then resell

e Cardholders dispute
transactions

 Merchant ends up bearing
cost of fraud

port football opinion culture business lifestyle fashion environment tech travel

theguardian

= browse all sections

markets eurozone economics banking

Target says data breach possibly
affected millions of credit cards

Data breach at height of holiday shopping made millions of customer accounts
vulnerable to theft, retailer says

Most popular

Revealed: the 30-year

o] n
Nﬂ% economic betrayal
A‘, o7 draggingdown

WL =" Generation Y'sincome

credit card dumps S n

All Shopping Videos News Images More v Search tools

About 532,000 results (0.46 seconds)

Carding Forum - Carding - Credit Cards - Dumps - Tracks ...
www.cardingmafia.ws/ v

carding forum, carding, carders, western union transfer, illegal credit cards, credit card,
cc, tracks, dumps, pin, dell alienware, hacking, botnet, security, paypal, ...

Public Credit Cards - Admission on Carding Class V1 - Public Carding Tutorials

Rescator.CM - Buy Dumps Shop & Credit Cards with cvv2
https://rescator.cm/ v

Buy Dumps Shop of Superior Quality. Track1 & Track 2. Valid rate of %90. Feedbacks
on many forums.

v O0CTI10 AplPay PEET'S #00502SAN FRANCISCO CA

Doing business as:
PEET'S COFFEE & TEA

2156 CHESTNUT ST
SAN FRANCISCO
CA

94123-2709
UNITED STATES

Additional Information: 587931 FAST FOOD RESTAURANT
FAST FOOD RESTAURANT
Reference: 320152840922965595

Dispute/Inquire about this Charge

Machine Learning

We want to detect fraud in real-time

Imagine we had a black box “classifier” which we fed all
the properties we have for a transaction (e.g., amount)

The black box responds with the probabillity that the
transaction is fraudulent

We use the black box elsewhere in our system: e.qg.,
Stripe’s APl will query it for every transaction and
immediately declines a charge if the probability of fraud
IS high enough

INnput data

fraudulent, charge_time,amount, card_country, card_use_24h
False,2015-12-31T723:59:59Z,20484,US,0
False,2015-12-31T723:59:59Z7,1211, US 0
False,2015—12—31T23:59:592,8396,US,1
False,2015-12-31T723:59:59Z7,2359,US, 0
False,2015-12-31T723:59:59Z,1480,US, 3
False,2015-12-31T23:59:597,535,US, 3
False,2015-12-31T723:59:59Z7,1632,US, 0
False,2015-12-31T723:59:59Z7,10305,US, 1
False,2015-12-31T23:59:597,2783,US,0
False,2015-12-31T723:59:597,939,US,0

Choosing the “features” (feature engineering) is a
hard problem that we won't cover here

First attempt

Probability(fraud) = a X amount + b X card_use_24h + --- + Z

Two Issues:
* Probability(fraud) needs to be between 0 and 1

e card_country is not numerical (it's “categorical”)

| ogistic regression

* |nstead of modeling p = Probability(fraud) as a
linear function, we model the log-odds of fraud

log(IL) = a X amount + b X card_use_24h + --- + Z
4

* pis asigmoidal function of the right side

10

0.8

_ exp(a X amount + b X card_use_24h+ -+ +Z) s
1+ exp(a X amount + b X card_use_24h + --- + Z) z

£ 04

4

0.2

0.0

Categorical variables

e |f we have a variable that takes one of N discrete
values, we “encode” that by adding N - 1 "dummy”
variables

* Ex: Let's say card_country can be “AU,” “GB,” or
"US.” We add booleans for “card = AU” and “card
= GB’

 We don't want a Imear relationship among variables

P\ _
Our final model is 10g< " —p) = a X amount + b X card_use_24h +

¢ X (country = AU) + d X (country = GB) + Z

FItting a regression

log< 7 P) = g X amount + b X card_use_24h +
—P
¢ X (country = AU) +d X (country = GB) + Z

e (Guess values for a, b, ¢, d, and Z

 Compute the “likelihood” of the training observations
g|ven these values for the parameters

tabed,2) = [[pe [] (1—p<xj))

fraud not fraud

. Fmd a, b, ¢, d, and Zthat maximize ||ke||hood
(optimization problem—gradient descent)

import pandas as pd

data = pd.read csv('data.csv')

data.head()

fraudulent | charge_time amount | card_country | card_use_24h
0 |False 2015-12-31T23:59:597 | 20484 |(US 0
1 |False 2015-12-31T723:59:59Z | 1211 UsS 0
2 |False 2015-12-31T23:59:59Z | 8396 UsS 1
3 |False 2015-12-31T23:59:597 | 2359 uUsS 0
4 (False 2015-12-31T23:59:597 | 1480 UsS 3

data.fraudulent.value counts()

False 45174
True 44219
Name: fraudulent, dtype: inté64

data.card country.value counts()

US 84494
GB 2754
AU 2145

Name: card country, dtype: inté64

pandas brings
R-like data
frames to
Python

encoded countries = pd.get dummies(data.card country, prefix='cc ')

encoded countries.head()

cc_AU |cc_GB|cc__US
0|0 0 1
1(0 0 1
2|0 0 1
3|0 0 1
410 0 1
data = data.join(encoded countries)
data.head()

fraudulent | charge_time amount | card_country (card_use_24h |cc_ AU ([cc__GB |cc__US
0 |False 2015-12-31T23:59:59Z | 20484 |US 0 0 0 1
1 |False 2015-12-31T23:59:59Z | 1211 us 0 0 0 1
2 |False 2015-12-31T723:59:597 | 8396 usS 1 0 0 1
3 |False 2015-12-31T283:59:597 | 2359 us 0 0 0 1
4 |False 2015-12-31T23:59:59Z | 1480 us 3 0 0 1
y = data.fraudulent
X = data[['amount', 'card use 24h', 'cc_ AU', 'cc_ GB']]

from sklearn.cross validation import train test split

X train, X test, y train, y test = train test split(X, y, test size=0.33)

* We want models to generalize well, 1.e., to give
accurate predictions on new data

e We don’t want to “overfit” to randomness in the
data we use to train the model, so we evaluate our

performance on data not used to generate the
model

Logistic Regression
from sklearn.linear model import LogisticRegression

lr model = LogisticRegression().fit(X train, y train)

lr model.coef

array([[4.62586221e-06, 3.53495554e-02, 4.28936114e-03,
2.49802503e-03]1])

lr model.intercept

array([-0.0157345])

log(IL) = 4.63 X 107° x amount + 0.035 X card_use_24h +
4
0.0043 X (cc_AU = 1)+ 0.0025 X (cc_GB = 1) — 0.016

—valuating the model - ROC, AUC

from sklearn.metrics import roc_curve, roc_auc_score

fpr, tpr, thresholds = roc curve(y test, y test scores 1lr)

10

FPR = fraction of
Pe[freshold = 052 non-fraud predicted
0¢ to be fraud

04

TPR = fraction of
02 fraud predicted
N 5 to be fraud

0.0 0.2 04 0.6 0.8 10
False Positive Rate

True Positive Rate (Recall)

roc_auc_score(y_test, y test scores 1lr)

0.70615874763542874

Nonlinear models

* (Logistic) regressions are linear models: if you
double one input value, the log-odds also double

* What if the impact of amount depends on another
variable” For example, maybe larger amounts are
more predictive of fraud for GB cards.”

 What if the effect of amount is nonlinear? For
example, maybe small and large charges are more
likely to be fraudulent than charges with moderate
amounts.

Decision Irees

card use 24h<=2.5
gini = 0.4998
samples = 59893
value = [30475, 29418]

Tru’e/

&*"alse

amount <= 12755.0
gini = 0.4765
samples = 41064
value = [24984, 16080]

card use 24h<=5.5

gini = 0.4132

samples = 18829
value = [5491, 13338]

g

'

gini =0.4534
samples = 34566
value = [22559, 12007]

gini = 0.4678
samples = 6498
value = [2425, 4073]

gini = 0.4683
samples = 11749

value = [4395, 7354

gini = 0.2617

samples = 7080
value = [1096, 5984

p =0.34

0 =0.63

0 =0.63

o =0.85

Fitting a decision tree

e Start with a node (first node is all the data)

 Pick the split that maximizes the decrease in Gini 2p(1 — p)
(weighted by size of child nodes)

card use 24h<=2.5

* Example gain: gini = 04998
samples = 59893
(04998) - (\faluclzpl .;()475. 29418]
(41064/59893) * 0.4765 + 1/ \:1
*
(1 8829/59893) 041 32) amount <= 12755.0 card_use_24h <=35.5
= 0.043 gini = 0.4765 gini =0.4132
samples = 41064 samples = 18829
value = [24984, 16080 | value = [5491, 13338]
« Continue recursively until - ! ! ~

stopping criterion reachead

Random forests

e Decision trees are “easy” to overfit

 We train N trees, each on a (bootstrapped) sample of
the training data

* At each split, we only consider a subset of the available
features—say, sqgrt(total # of features) of them

* This reduces correlation among the trees

* The score is the average of the score produced by
each tree

Decision Tree
from sklearn.tree import DecisionTreeClassifier

dt model = DecisionTreeClassifier(
max depth=3, min samples split=20).fit(X train, y train)

y _test scores dt = [x[1] for x in dt model.predict proba(X test)]

roc_auc_score(y test, y test scores dt)

0.69289424199670357

Random Forest
from sklearn.ensemble import RandomForestClassifier

rf model = RandomForestClassifier(
n estimators=100, min samples leaf=100).fit(X train, y train)

y _test scores rf = [x[1] for x in rf model.predict proba(X test)]

roc_auc_score(y _test, y test scores rf)

0.73611360329083841

Choosing methods

* Use regression if: the James, Witten, Hastie, Tibshirani
relationship between the target Introduction to Statistical Learning

and the inputs is linear, or you
want to be able to isolate the

impact of each variable on the ~ /
target |

 Use atree/forest if: there are
complex dependencies : :
between inputs or the impact ~
on the target of an input is
nonlinear A

2
2

1
1

2
2

0
Xz
0

Where do you stick the
model”?

 Make model scoring a service: work common to all
model evaluations happens in one place (e.g., logging
of scores and feature values for later analysis)

* Easier option: save Python model objects and have
scoring be a Python service (e.g., with Tornado)

 Advantages: easy to set-up

* Disadvantages: all the problems with pickling,
another production runtime (if you're not already
using Python), GIL (no concurrent model evaluation)

Other option: create (custom) serialization format,
save models in Python, and load in a service in a
different language (e.g., Scala/Go)

* Advantages: Runtime consistency, fun evaluation
optimizations (e.g, concurrently scoring all the trees
in a forest), type checking

* Disadvantages: Have to write serializer/deserializer
(PMML is a “standard” but no scikit support)

Better it your RPC protocol supports type-checking
(e.g. protobuf or thrift)!

Harder problems

e Feature engineering: figuring out what inputs are
valuable to the model (e.g., the “card_use_24h”
input)

* (Getting data into the right format in production: say
you generate training data on Hadoop—what do
you do in production?

e Evaluating the production model performance and
training new models? (Counterfactual evaluation)

Thanks

@mimanapat

Slides, Jupyter notebook, data, and related talks at
http://mIimanapat.com

Shameless plug:
Stripe is hiring engineers and data scientists

