
Startup Machine Learning: 
Bootstrapping a fraud 
detection system

Michael Manapat 
Stripe 
@mlmanapat



• About me: Engineering Manager of the  
Machine Learning Products Team at Stripe 

• About Stripe: Payments infrastructure for the 
internet 



Fraud
• Card numbers are stolen by 

hacking, malware, etc. 

• “Dumps” are sold in “carding” 
forums 

• Fraudsters use numbers in 
dumps to buy goods, which 
they then resell 

• Cardholders dispute 
transactions 

• Merchant ends up bearing 
cost of fraud



Machine Learning
• We want to detect fraud in real-time 

• Imagine we had a black box “classifier” which we fed all 
the properties we have for a transaction (e.g., amount) 

• The black box responds with the probability that the 
transaction is fraudulent 

• We use the black box elsewhere in our system: e.g., 
Stripe’s API will query it for every transaction and 
immediately declines a charge if the probability of fraud 
is high enough



Input data

Choosing the “features” (feature engineering) is a 
hard problem that we won’t cover here



First attempt

Two issues: 

• Probability(fraud) needs to be between 0 and 1 

• card_country is not numerical (it’s “categorical”)



Logistic regression
• Instead of modeling p = Probability(fraud) as a 

linear function, we model the log-odds of fraud 

• p is a sigmoidal function of the right side



Categorical variables
• If we have a variable that takes one of N discrete 

values, we “encode” that by adding N - 1 “dummy” 
variables 

• Ex: Let’s say card_country can be “AU,” “GB,” or 
“US.” We add booleans for “card = AU” and “card 
= GB” 

• We don’t want a linear relationship among variables 

Our final model is



Fitting a regression

• Guess values for a, b, c, d, and Z 

• Compute the “likelihood” of the training observations 
given these values for the parameters 

• Find a, b, c, d, and Z that maximize likelihood 
(optimization problem—gradient descent)



pandas brings 
R-like data 
frames to 
Python





• We want models to generalize well, i.e., to give 
accurate predictions on new data 

• We don’t want to “overfit” to randomness in the 
data we use to train the model, so we evaluate our 
performance on data not used to generate the 
model





FPR = fraction of 
non-fraud predicted 
to be fraud

TPR = fraction of 
fraud predicted 
to be fraud

threshold = 0.52

Evaluating the model - ROC, AUC



Nonlinear models
• (Logistic) regressions are linear models: if you 

double one input value, the log-odds also double 

• What if the impact of amount depends on another 
variable? For example, maybe larger amounts are 
more predictive of fraud for GB cards.* 

• What if the effect of amount is nonlinear? For 
example, maybe small and large charges are more 
likely to be fraudulent than charges with moderate 
amounts.



Decision Trees

p = 0.34 p = 0.63 p = 0.63 p = 0.85 



Fitting a decision tree
• Start with a node (first node is all the data) 

• Pick the split that maximizes the decrease in Gini 
(weighted by size of child nodes) 

• Example gain: 
(0.4998) - (  
(41064/59893) * 0.4765 +  
(18829/59893) * 0.4132) 
= 0.043 

• Continue recursively until 
stopping criterion reached



Random forests
• Decision trees are “easy” to overfit 

• We train N trees, each on a (bootstrapped) sample of 
the training data 

• At each split, we only consider a subset of the available 
features—say, sqrt(total # of features) of them 

• This reduces correlation among the trees 

• The score is the average of the score produced by 
each tree





Choosing methods
• Use regression if: the 

relationship between the target 
and the inputs is linear, or you 
want to be able to isolate the 
impact of each variable on the 
target 

• Use a tree/forest if: there are 
complex dependencies 
between inputs or the impact 
on the target of an input is 
nonlinear

James, Witten, Hastie, Tibshirani 
Introduction to Statistical Learning



Where do you stick the 
model?
• Make model scoring a service: work common to all 

model evaluations happens in one place (e.g., logging 
of scores and feature values for later analysis) 

• Easier option: save Python model objects and have 
scoring be a Python service (e.g., with Tornado) 

• Advantages: easy to set-up 

• Disadvantages: all the problems with pickling, 
another production runtime (if you’re not already 
using Python), GIL (no concurrent model evaluation)



Other option: create (custom) serialization format, 
save models in Python, and load in a service in a 
different language (e.g., Scala/Go) 

• Advantages: Runtime consistency, fun evaluation 
optimizations (e.g, concurrently scoring all the trees 
in a forest), type checking 

• Disadvantages: Have to write serializer/deserializer 
(PMML is a “standard” but no scikit support) 

Better if your RPC protocol supports type-checking 
(e.g. protobuf or thrift)!



• Feature engineering: figuring out what inputs are 
valuable to the model (e.g., the “card_use_24h” 
input) 

• Getting data into the right format in production: say 
you generate training data on Hadoop—what do 
you do in production? 

• Evaluating the production model performance and 
training new models? (Counterfactual evaluation)

Harder problems



Thanks
@mlmanapat 

Slides, Jupyter notebook, data, and related talks at 
http://mlmanapat.com 

Shameless plug: 
Stripe is hiring engineers and data scientists


