

Stream Processing with Apache Flink

QCon London, March 7, 2016

Robert Metzger @rmetzger_ rmetzger@apache.org

- My take on the stream processing space, and how it changes the way we think about data
- Discussion of unique building blocks of Flink
- Benchmarking Flink, by extending a benchmark from Yahoo!

- Apache Flink is an open source stream processing framework
 - Low latency
 - High throughput
 - Stateful
 - Distributed

 Developed at the Apache Software Foundation, 1.0.0 release available soon, used in production

Entering the streaming era

Streaming is the biggest change in data infrastructure since Hadoop

Radically simplified infrastructure Do more with your data, faster Can completely subsume batch

Traditional data processing

Log analysis example using a batch processor

Traditional data processing

Latency from log event to serving layer usually in the range of hours

Data processing without stream processor

 This architecture is a hand-crafted microbatch model

Approach	Manually triggered periodic batch job		processor nicro-batches	Stream processor
Latency	hours	minutes	seconds	milliseconds

Downsides of stream processing with a batch engine

- Very high latency (hours)
- Complex architecture required:
 - Periodic job scheduler (e.g. Oozie)
 - Data loading into HDFS (e.g. Flume)
 - Batch processor
 - (When using the "lambda architecture": a stream processor)
- All these components need to be implemented and maintained
- Backpressure: How does the pipeline handle load spikes?

Log event analysis using a stream processor

Stream processors allow to analyze events with sub-second latency.

Real-world data is produced in a continuous fashion.

New systems like Flink and Kafka embrace streaming nature of data.

What do we need for replacing the "batch stack"?

Apache Flink stack

Needed for the use case

Windowing / Out of order events

Building windows from a stream

"Number of visitors in the last 5 minutes per country"

// create stream from Kafka source

DataStream<LogEvent> stream = env.addSource(new KafkaConsumer()); // group by country DataStream<LogEvent> keyedStream = stream.keyBy("country"); // window of size 5 minutes keyedStream.timeWindow(Time.minutes(5)) // do operations per window .apply(new CountPerWindowFunction());

Building windows: Execution

// window of size 5 minutes
keyedStream.timeWindow(Time.minutes(5));

Window types in Flink

Sliding windows

 Custom windows with window assigners, triggers and evictors

Further reading: http://flink.apache.org/news/2015/12/04/Introducing-windows.html

→ Windows are created based on the real world time when the event occurred

A look at the reality of time

- Events arrive out of order in the system
- Use-case specific low watermarks for time tracking

Time characteristics in Apache Flink

Event Time

- Users have to specify an event-time extractor + watermark emitter
- Results are deterministic, but with latency
- Processing Time
 - System time is used when evaluating windows
 - low latency
- Ingestion Time
 - Flink assigns current system time at the sources
- Pluggable, without window code changes

State handling

Where do we store the elements from our windows?

 In stateless systems, an external state store (e.g. Redis) is needed.

Managed state in Flink

- Flink automatically backups and restores state
- State can be larger than the available memory
- State backends: (embedded) RocksDB, Heap memory

Managing the state

- How can we operate such a pipeline 24x7?
- Losing state (by stopping the system) would require a replay of past events
- We need a way to store the state somewhere!

Savepoints: Versioning state

- Savepoint: Create an addressable copy of a job's current state.
- Restart a job from any savepoint.

> hdfs:///flink-savepoints/2

Further reading: http://data-artisans.com/how-apache-flink-enables-new-streaming-applications/

Fault tolerance and correctness

Fault tolerance in streaming

Stream processor
 How do we ensure the results (number of visitors) are always correct?

Kafka topic

Web server

 Failures should not lead to data loss or incorrect results

- at least once: ensure all operators see all events
 - Storm: Replay stream in failure case (acking of individual records)
- Exactly once: ensure that operators do not perform duplicate updates to their state
 - Flink: Distributed Snapshots
 - Spark: Micro-batches on batch runtime

Flink's Distributed Snapshots

- Lightweight approach of storing the state of all operators without pausing the execution
- Implemented using barriers flowing through the topology

Further reading: http://blog.acolyer.org/2015/08/19/asynchronous-distributed-snapshots-fordistributed-dataflows/

Wrap-up: Log processing example

- How to do something with the data?
 Windowing
- How does the system handle large windows?
 Managed state
- How do operate such a system 24x7?
 Safepoints
- How to ensure correct results across failures?
 Checkpoints, Master HA

Performance: Low Latency & High Throughput

Performance: Introduction

- Performance always depends on your own use cases, so test it yourself!
- We based our experiments on a recent benchmark published by Yahoo!
- They benchmarked Storm, Spark Streaming and Flink with a production usecase (counting ad impressions)

Yahoo! Benchmark

- Count ad impressions grouped by campaign
- Compute aggregates over a 10 second window
- Emit current value of window aggregates to Redis every second for query

"Storm [...] and Flink [...] show sub-second latencies at relatively high throughputs with Storm having the lowest 99th percentile latency. Spark streaming 1.5.1 supports high throughputs, but at a relatively higher latency."

(Quote from the blog post's executive summary)

Extending the benchmark

- Benchmark stops at Storm's throughput limits. Where is Flink's limit?
- How will Flink's own window implementation perform compared to Yahoo's "state in redis windowing" approach?

Windowing with state in Redis

Rewrite to use Flink's own window

Results after rewrite

Can we even go further?

Results without network bottleneck

- Flink achieves throughput of 15 million messages/second on 10 machines
- 35x higher throughput compared to Storm (80x compared to Yahoo's runs)
- Flink ran with exactly once guarantees, Storm with at least once.
- Read the full report: http://dataartisans.com/extending-the-yahoostreaming-benchmark/

Closing

- Expressive DataStream API (similar to high level APIs known from the batch world)
- Flink is a full-fledged batch processor with an optimizer, managed memory, memoryaware algorithms, build-in iterations
- Many libraries: Complex Event Processing (CEP), Graph Processing, Machine Learning
- Integration with YARN, HBase, ElasticSearch, Kafka, MapReduce, ...

Questions?

- Ask now!
- eMail: <u>rmetzger@apache.org</u>
- Twitter: @rmetzger_

- Follow: @ApacheFlink
- Read: flink.apache.org/blog, dataartisans.com/blog/
- Mailinglists: (news | user | dev)@flink.apache.org

Apache Flink stack

Appendix

Roadmap 2016

- SQL / StreamSQL
- CEP Library
- Managed Operator State
- Dynamic Scaling
- Miscellaneous

Miscellaneous

- Support for Apache Mesos
- Security
 - Over-the-wire encryption of RPC (akka) and data transfers (netty)
- More connectors
 - Apache Cassandra
 - Amazon Kinesis
- Enhance metrics
 - Throughput / Latencies
 - Backpressure monitoring
 - Spilling / Out of Core

Fault Tolerance and correctness

How can we ensure the state is always in sync with the events?

Naïve state checkpointing approach

 Stop everything, store state:

Operator	State
а	1
b	1
С	2
d	2

Continue processing …

Distributed Snapshots

Operator	State
а	1
b	1

Distributed Snapshots

State

1

1

2

Valid snapshot without stopping the topology

Operator

а

b

С

Multiple checkpoints can be in-flight

Analysis of naïve approach

- Introduces latency
- Reduces throughput
- Can we create a correct snapshot while keeping the job running?
- Yes! By creating a distributed snapshot

Handling Backpressure

Backpressure might occur when:

- Operators create checkpoints
- Windows are evaluated
- Operators depend on external resources
- JVMs do Garbage Collection

Handling Backpressure

 Data sources slow down pulling data from their underlying system (Kafka or similar queues)

How do latency and throughput affect each other?

- High throughput by batching events in network buffers
- Filling the buffers introduces latency
- Configurable buffer timeout 120.00

Aggregate throughput for stream record grouping

30 machines, 120 cores, Google Compute

→ Flink achieves 260x higher throughput with fault tolerance

Performance: Summary

Flink buffer timeout (milliseconds)

The building blocks: Summary

Windowing / Out of order events

- Tumbling / sliding windows
- Event time / processing time
- Low watermarks for out of order events

Fault tolerance and correctness

- Exactly-once semantics for managed operator state
- Lightweight, asynchronous distributed snapshotting algorithm

State handling

- Managed operator state for backup/recovery
- Large state with RocksDB
- Savepoints for operations

Low latency High throughput

- Efficient, pipelined runtime
- no per-record operations
- tunable latency / throughput tradeoff
- Async checkpoints

 We periodically send low-watermarks through the system to indicate the progression of event time.

For more details: "MillWheel: Fault-Tolerant Stream Processing at Internet Scale" by T. Akidau et. al.

Low Watermarks

For more details: "MillWheel: Fault-Tolerant Stream Processing at Internet Scale" by T. Akidau et. al.

Bouygues Telecom

Mobile . Fixed . TV . Internet . Cloud

Bouygues Telecom

- Produce Mobile QoE indicators from massive network equipment's event logs (4 Billions/day).
- Goals:
 - -QoE (User) instead of QoS (Machine).
 - –Real-time Diagnostic (<60sec. end-to-end latency)</p>
 - -Business Intelligence
 - -Real-time alarming
 - -Reporting

Bouygues Telecom

- We ran stress tests on our biggest raw Kafka topic:
 - A day of Data.
 - 2 Billions events (480Gib compressed).
 - 10 Kafka partitions
 - 10 Flink
 TaskManagers (Only 1GB Memory each)

Capital One

Fault Tolerance in streaming

Failure with "at least once": replay

Fault Tolerance in streaming

Failure with "exactly once": state restore

Latency in stream record grouping

• Measure time for a record to travel from source to sink

- Streaming jobs usually run 24x7 (unlike batch).
- Application bug fixes: Replay your job from a certain point in time (savepoint)
- Flink bug fixes
- Maintenance and system migration
- What-If simulations: Run different implementations of your code against a savepoint

Pipelining

Basic building block to "keep the data moving"

- Low latency
- Operators push data forward
- Data shipping as buffers, not tuplewise
- Natural handling of back-pressure

Complete pipeline online concurrently

