
Stream Processing with

Apache Flink

Robert Metzger

@rmetzger_

rmetzger@apache.org

QCon London,
March 7, 2016

Talk overview

 My take on the stream processing space,

and how it changes the way we think

about data

 Discussion of unique building blocks of

Flink

 Benchmarking Flink, by extending a

benchmark from Yahoo!

2

Apache Flink

 Apache Flink is an open source stream

processing framework

• Low latency

• High throughput

• Stateful

• Distributed

 Developed at the Apache Software

Foundation, 1.0.0 release available soon,

used in production

3

Entering the streaming era

4

5

Streaming is the biggest change in

data infrastructure since Hadoop

6

1. Radically simplified infrastructure

2. Do more with your data, faster

3. Can completely subsume batch

Traditional data processing

7

Web server

Logs

Web server

Logs

Web server

Logs

HDFS / S3

Periodic (custom) or
continuous ingestion
(Flume) into HDFS

Batch job(s) for
log analysis

Periodic log analysis
job

Serving
layer

 Log analysis example using a batch

processor

Job scheduler
(Oozie)

Traditional data processing

8

Web server

Logs

Web server

Logs

Web server

Logs

HDFS / S3

Periodic (custom) or
continuous ingestion
(Flume) into HDFS

Batch job(s) for
log analysis

Periodic log analysis
job

Serving
layer

 Latency from log event to serving layer

usually in the range of hours

every 2 hrs

Job scheduler
(Oozie)

Data processing without stream

processor

9

Web server

Logs

Web server

Logs

HDFS / S3
Batch job(s) for

log analysis

 This architecture is a hand-crafted micro-

batch model

Batch interval: ~2 hours

hours minutes milliseconds

Manually triggered
periodic batch job

Batch processor
with micro-batches

Latency

Approach

seconds

Stream processor

Downsides of stream processing with a

batch engine

 Very high latency (hours)

 Complex architecture required:
• Periodic job scheduler (e.g. Oozie)

• Data loading into HDFS (e.g. Flume)

• Batch processor

• (When using the “lambda architecture”: a stream
processor)

All these components need to be
implemented and maintained

 Backpressure: How does the pipeline handle
load spikes?

10

Log event analysis using a

stream processor

11

Web server

Web server

Web server

High throughput
publish/subscribe

bus

Serving
layer

 Stream processors allow to analyze

events with sub-second latency.

Options:
• Apache Kafka
• Amazon Kinesis
• MapR Streams
• Google Cloud Pub/Sub

Forward events
immediately to
pub/sub bus

Stream Processor

Options:
• Apache Flink
• Apache Beam
• Apache Samza

Process events in real
time & update
serving layer

12

Real-world data is produced in a

continuous fashion.

New systems like Flink and Kafka

embrace streaming nature of data.

Web server Kafka topic

Stream processor

What do we need for replacing

the “batch stack”?

13

Web server

Web server

Web server

High throughput
publish/subscribe

bus

Serving
layer

Options:
• Apache Kafka
• Amazon Kinesis
• MapR Streams
• Google Cloud Pub/Sub

Forward events
immediately to
pub/sub bus

Stream Processor

Options:
• Apache Flink
• Google Cloud

Dataflow

Process events in real
time & update
serving layer

Low latency
High throughput

State handling
Windowing / Out
of order events

Fault tolerance
and correctness

Apache Flink stack

15

G
e

lly

T
a
b
le

M
L

S
A

M
O

A

DataSet (Java/Scala)DataStream (Java / Scala)

H
a
d
o
o
p

M
/R

LocalClusterYARN

A
p
a
c
h
e
 B

e
a
m

A
p
a
c
h
e
 B

e
a
m

T
a
b
le

C
a
s
c
a
d
in

g

Streaming dataflow runtime

S
to

rm
 A

P
I

Z
e
p
p
e
lin

C
E

P

Needed for the use case

16

G
e

lly

T
a
b
le

M
L

S
A

M
O

A

DataSet (Java/Scala)DataStream (Java / Scala)

H
a
d
o
o
p

M
/R

LocalClusterYARN

A
p
a
c
h
e
 B

e
a
m

A
p
a
c
h
e
 B

e
a
m

T
a
b
le

C
a
s
c
a
d
in

g

Streaming dataflow runtime

S
to

rm
 A

P
I

Z
e
p
p
e
lin

C
E

P

Windowing / Out of order

events

17

Low latency
High throughput

State handling
Windowing / Out
of order events

Fault tolerance
and correctness

Building windows from a stream

18

 “Number of visitors in the last 5 minutes
per country”

Web server Kafka topic

Stream processor

// create stream from Kafka source

DataStream<LogEvent> stream = env.addSource(new KafkaConsumer());

// group by country

DataStream<LogEvent> keyedStream = stream.keyBy(“country“);

// window of size 5 minutes

keyedStream.timeWindow(Time.minutes(5))

// do operations per window

.apply(new CountPerWindowFunction());

Building windows: Execution

19

Kafka

Source

Window
Operator

S

S

S

W

W

W
group by
country

// window of size 5 minutes

keyedStream.timeWindow(Time.minutes(5));

Job plan Parallel execution on the cluster

Time

Window types in Flink

 Tumbling windows

 Sliding windows

 Custom windows with window assigners,
triggers and evictors

20Further reading: http://flink.apache.org/news/2015/12/04/Introducing-windows.html

Time-based windows

21

Stream

Time of event

Event data

{
“accessTime”: “1457002134”,
“userId”: “1337”,
“userLocation”: “UK”

}

 Windows are created based on the real

world time when the event occurred

A look at the reality of time

22

Kafka

Network delays

Out of sync clocks

33 11 21 15 9

 Events arrive out of order in the system

 Use-case specific low watermarks for time
tracking

Window between
0 and 15

Stream Processor

15

Guarantee that no event with time
<= 15 will arrive afterwards

Time characteristics in Apache Flink

 Event Time

• Users have to specify an event-time extractor +

watermark emitter

• Results are deterministic, but with latency

 Processing Time

• System time is used when evaluating windows

• low latency

 Ingestion Time

• Flink assigns current system time at the sources

 Pluggable, without window code changes
23

State handling

24

Low latency
High throughput

State handling
Windowing / Out
of order events

Fault tolerance
and correctness

State in streaming

 Where do we store the elements from our

windows?

 In stateless systems, an external state

store (e.g. Redis) is needed.

25

S

S

S

W

W

W
Time

Elements in windows
are state

Stream processor: Flink

Managed state in Flink

 Flink automatically backups and restores state

 State can be larger than the available memory

 State backends: (embedded) RocksDB, Heap

memory

26

Operator with windows
(large state)

State
backend

(local)

Distributed
File System

Periodic backup /
recovery

Web
server

Kafka

Managing the state

 How can we operate such a pipeline

24x7?

 Losing state (by stopping the system)

would require a replay of past events

 We need a way to store the state

somewhere!

27

Web server Kafka topic

Stream processor

Savepoints: Versioning state

 Savepoint: Create an addressable copy of a

job’s current state.

 Restart a job from any savepoint.

28
Further reading: http://data-artisans.com/how-apache-flink-enables-new-streaming-applications/

> flink savepoint <JobID>

HDFS

> hdfs:///flink-savepoints/2

> flink run –s hdfs:///flink-savepoints/2 <jar>

HDFS

Fault tolerance and

correctness

29

Low latency
High throughput

State handling
Windowing / Out
of order events

Fault tolerance
and correctness

Fault tolerance in streaming

 How do we ensure the results (number of

visitors) are always correct?

 Failures should not lead to data loss or

incorrect results

30

Web server Kafka topic

Stream processor

Fault tolerance in streaming

 at least once: ensure all operators see all

events

• Storm: Replay stream in failure case (acking

of individual records)

 Exactly once: ensure that operators do

not perform duplicate updates to their

state

• Flink: Distributed Snapshots

• Spark: Micro-batches on batch runtime

31

Flink’s Distributed Snapshots

 Lightweight approach of storing the state

of all operators without pausing the

execution

 Implemented using barriers flowing

through the topology

32

Data Stream

barrier

Before barrier =

part of the snapshot
After barrier =

Not in snapshot

Further reading: http://blog.acolyer.org/2015/08/19/asynchronous-distributed-snapshots-for-

distributed-dataflows/

Wrap-up: Log processing example

 How to do something with the data?
Windowing

 How does the system handle large windows?
Managed state

 How do operate such a system 24x7?
Safepoints

 How to ensure correct results across failures?
Checkpoints, Master HA

33

Web server Kafka topic

Stream processor

Performance:

Low Latency & High Throughput

34

Low latency
High throughput

State handling
Windowing / Out
of order events

Fault tolerance
and correctness

Performance: Introduction

 Performance always depends on your own

use cases, so test it yourself!

 We based our experiments on a recent

benchmark published by Yahoo!

 They benchmarked Storm, Spark

Streaming and Flink with a production use-

case (counting ad impressions)

35
Full Yahoo! article: https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-

computation-engines-at

Yahoo! Benchmark

 Count ad impressions grouped by

campaign

 Compute aggregates over a 10 second

window

 Emit current value of window aggregates

to Redis every second for query

36
Full Yahoo! article: https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-

computation-engines-at

Yahoo’s Results

“Storm […] and Flink […] show sub-second

latencies at relatively high throughputs with

Storm having the lowest 99th percentile

latency. Spark streaming 1.5.1 supports high

throughputs, but at a relatively higher

latency.”
(Quote from the blog post’s executive summary)

37
Full Yahoo! article: https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-

computation-engines-at

Extending the benchmark

 Benchmark stops at Storm’s throughput

limits. Where is Flink’s limit?

 How will Flink’s own window

implementation perform compared to

Yahoo’s “state in redis windowing”

approach?

38
Full Yahoo! article: https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-

computation-engines-at

Windowing with state in Redis

39

KafkaConsumer
map()
filter()

group
windowing &
caching code

realtime queries

Rewrite to use Flink’s own window

40

KafkaConsumer
map()
filter()

group

Flink event
time

windows

realtime queries

Results after rewrite

41

0 750.000 1.500.000 2.250.000 3.000.000 3.750.000

Storm

Flink

Throughput: msgs/sec

400k msgs/sec

Can we even go further?

42

KafkaConsumer
map()
filter()

group

Flink event
time

windows

Network link to
Kafka cluster is

bottleneck!
(1GigE)

Data Generator
map()
filter()

group

Flink event
time

windows

Solution: Move
data generator

into job (10 GigE)

Results without network bottleneck

43

0 4.000.000 8.000.000 12.000.000 16.000.000

Storm

Flink

Flink (10 GigE)

Throughput: msgs/sec

10 GigE end-to-end

15m msgs/sec

400k msgs/sec

3m msgs/sec

Benchmark summary

 Flink achieves throughput of 15 million

messages/second on 10 machines

 35x higher throughput compared to

Storm (80x compared to Yahoo’s runs)

 Flink ran with exactly once guarantees,

Storm with at least once.

 Read the full report: http://data-

artisans.com/extending-the-yahoo-

streaming-benchmark/

44

Closing

45

Other notable features

 Expressive DataStream API (similar to high

level APIs known from the batch world)

 Flink is a full-fledged batch processor with

an optimizer, managed memory, memory-

aware algorithms, build-in iterations

 Many libraries: Complex Event Processing

(CEP), Graph Processing, Machine Learning

 Integration with YARN, HBase,

ElasticSearch, Kafka, MapReduce, …

46

Questions?

 Ask now!

 eMail: rmetzger@apache.org

 Twitter: @rmetzger_

 Follow: @ApacheFlink

 Read: flink.apache.org/blog, data-

artisans.com/blog/

 Mailinglists: (news | user | dev)@flink.apache.org

47

mailto:rmetzger@apache.org

Apache Flink stack

48

G
e

lly

T
a
b
le

M
L

S
A

M
O

A

DataSet (Java/Scala)DataStream (Java / Scala)

H
a
d
o
o
p

M
/R

LocalClusterYARN

A
p
a
c
h
e
 B

e
a
m

A
p
a
c
h
e
 B

e
a
m

T
a
b
le

C
a
s
c
a
d
in

g

Streaming dataflow runtime

S
to

rm
 A

P
I

Z
e
p
p
e
lin

C
E

P

Appendix

49

Roadmap 2016

50

 SQL / StreamSQL

 CEP Library

 Managed Operator State

 Dynamic Scaling

 Miscellaneous

Miscellaneous

 Support for Apache Mesos

 Security
• Over-the-wire encryption of RPC (akka) and data

transfers (netty)

 More connectors
• Apache Cassandra

• Amazon Kinesis

 Enhance metrics
• Throughput / Latencies

• Backpressure monitoring

• Spilling / Out of Core

51

Fault Tolerance and correctness

52

4

3

4 2

 How can we ensure the state is always in

sync with the events?

event counter

final operator

Naïve state checkpointing approach

53

 Process some records:

 Stop everything,

store state:

 Continue processing …

0

0

0 0
1

1

2 2

Operator State

a 1

b 1

c 2

d 2

a

b

c d

Distributed Snapshots

54

0

0

0 0

1

1

0 0

Initial state

Start processing

1

1

0 0

Trigger checkpoint
Operator State

a 1

b 1

Distributed Snapshots

55

2

1

2 0

Operator State

a 1

b 1

c 2

Barrier flows with events

2

1

2 2

Checkpoint completed Operator State

a 1

b 1

c 2

d 2

 Valid snapshot without stopping the topology

 Multiple checkpoints can be in-flight

Complete,
consistent
state snapshot

Analysis of naïve approach

 Introduces latency

 Reduces throughput

 Can we create a correct snapshot while

keeping the job running?

 Yes! By creating a distributed snapshot

56

Handling Backpressure

57

Slow down
upstream
operators

Backpressure might occur when:
• Operators create checkpoints
• Windows are evaluated
• Operators depend on external

resources
• JVMs do Garbage Collection

Operator not able
to process

incoming data
immediately

Handling Backpressure

58

Sender

Sender

Receiver

Receiver

Sender does not have any
empty buffers available:
Slowdown

Network transfer (Netty) or
local buffer exchange
(when S and R are on the
same machine)

• Data sources slow down pulling data from their underlying
system (Kafka or similar queues)

Full buffer

Empty buffer

How do latency and throughput affect

each other?

flink.apache.org 5930 Machines, one repartition step

Sender

Sender

Receiver

Receiver

Send buffer when
full or timeout

• High throughput by batching events in network
buffers

• Filling the buffers introduces latency
• Configurable buffer timeout

Aggregate throughput for stream record

grouping

60

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

70.000.000

80.000.000

90.000.000

100.000.000

Flink, no
fault

tolerance

Flink,
exactly

once

Storm, no
fault

tolerance

Storm, at
least once

aggregate throughput
of 83 million elements
per second

8,6 million elements/s

309k elements/s  Flink achieves 260x
higher throughput with
fault tolerance

30 machines,
120 cores,
Google Compute

Performance: Summary

61

Continuous

streaming

Latency-bound

buffering

Distributed

Snapshots

High Throughput &

Low Latency

With configurable throughput/latency tradeoff

The building blocks: Summary

62

Low latency
High throughput

State handling
Windowing / Out
of order events

Fault tolerance
and correctness

• Tumbling / sliding windows
• Event time / processing time
• Low watermarks for out of order

events

• Managed operator state for
backup/recovery

• Large state with RocksDB
• Savepoints for operations

• Exactly-once semantics for
managed operator state

• Lightweight, asynchronous
distributed snapshotting algorithm

• Efficient, pipelined runtime
• no per-record operations
• tunable latency / throughput

tradeoff
• Async checkpoints

Low Watermarks

 We periodically send low-watermarks

through the system to indicate the

progression of event time.

63
For more details: “MillWheel: Fault-Tolerant Stream Processing at Internet
Scale” by T. Akidau et. al.

33 11 28 21 15 958

Guarantee that no event with time
<= 5 will arrive afterwards

Window
between
0 and 15

Window is evaluated when
watermarks arrive

Low Watermarks

64
For more details: “MillWheel: Fault-Tolerant Stream Processing at Internet Scale”
by T. Akidau et. al.

Operator 35

Operators with multiple inputs
always forward the lowest
watermark

Bouygues Telecom

65

Bouygues Telecom

66

Bouygues Telecom

67

Capital One

68

Fault Tolerance in streaming

 Failure with “at least once”: replay

69

4

3

4 2

Restore from: Final result:

7

5

9 7

Fault Tolerance in streaming

 Failure with “exactly once”: state restore

70

1

1

2 2

Restore from: Final result:

4

3

7 7

Latency in stream record grouping

71

Data
Generator

Receiver:
Throughput /

Latency measure

• Measure time for a record to
travel from source to sink

0,00

5,00

10,00

15,00

20,00

25,00

30,00

Flink, no
fault

tolerance

Flink, exactly
once

Storm, at
least once

Median latency

25 ms

1 ms

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Flink, no
fault

tolerance

Flink,
exactly

once

Storm, at
least
once

99th percentile
latency

50 ms

Savepoints: Simplifying Operations

 Streaming jobs usually run 24x7 (unlike

batch).

 Application bug fixes: Replay your job

from a certain point in time (savepoint)

 Flink bug fixes

 Maintenance and system migration

 What-If simulations: Run different

implementations of your code against a

savepoint
72

Pipelining

73

Basic building block to “keep the data moving”

• Low latency
• Operators push

data forward
• Data shipping as

buffers, not tuple-
wise

• Natural handling
of back-pressure

