
Sadek Drobi
prismic.io CEO & Co-founder

Playframework Co-creator
@sadache

Taming Failures by Partitioning
Time and Space

prismic.io, a snappy tour

Building a Website with dynamic
content is a pain

No content
management

Use CMS building
blocks and plugins

Use a visual builder
tool

<style>

 h1 { font-family: ‘Aller’ }

</style>

<h1>

 Change your world now!

</h1>

prismic.io is a new way to bring
your website content alive

prismic.io is a new way to bring
your website content alive

Simple Web API
 to consume

content

Content
management

backoffice

Content is Central to Websites

Business Wise

● Offer Performance and Reliability
● Excel where every CMS fails

First, we need to understand

the impact of system failure.

Impact of System Failure

● Writing Room: No edit, save or publish
● API: No end-user website

Impact of System Failure

● Writing Room: No edit, save or publish
● API: No end-user website

System Requirements From a Macro
Perspective

● Concurrent Write
● Concurrent Read
● Redundant
● Reliable and available
● Consistent

System Requirements From a Macro
Perspective

CAP says no!

Let’s Talk about Time

Observe time ticks

Observe time ticks

Two different universes, two different times

Authors write
some content On Publish,

Content is displayed on
website

Writer universe Viewer universe

Two different universes, two different times

publish

Data Extraction

API

On publish event, we update API system time

publish

Data Extraction

API

If Writing Room goes down, API isn’t affected

We Can Do Even Better

publish

Data Extraction
API

Clients APIs can be time decoupled too!

publish

Data Extraction
API

publish

Data Extraction
API

S3

publish

publish

publish

Infrastructure wise

publish

We use Apache Lucene for our API

Ready to download,
zipped Lucene

Index

download

S3

Server Failure?

Elastic?

Do we need
traffic officers or

traffic lights
here?

Applying the Same on the
Writing Room

Interactive Read/Write

Once a week
to post a blog post

Did not connect
for weeks

Does not connect
anymore

Giant database x100.000
repositories

Two hours a day
to update news

Do we really need to keep everything
here in case of?

Each repository has it own lifecycle

Databases
Book

Redundent
Cloud storage

Wake up on
demand

Archive when
idle

Infrastructure wise

S3

snapshots

logs

Clusters

Data Migration
Functionality A/B Testing

Observe time ticks

Solves

● Scalable space-efficient infrastructure
● Data migration and versioning (avoid

stop-the-world migrations)
● Multiple production environments (with

multiple data versions)
● Testing new functionalities

System Requirements From a Macro
Perspective

● Concurrent Write
● Concurrent Read
● Redundant
● Reliable and available
● Consistent

Scalability is not a buzzword you can put on a slide
nor

A technology you can purchase

