
Resilient Predictive Data
Pipelines
Sid Anand (@r39132)
QCon London 2016

1

About Me

2

Work [ed | s] @

Maintainer on

Report to

Co-Chair for

airbnb/airflow

Motivation
Why is a Data Pipeline talk in this High
Availability Track?

3

Different Types of Data Pipelines

4

ETL

• used for : loading data related
to business health into a Data
Warehouse
• user-engagement stats (e.g.

social networking)
• product success stats (e.g.

e-commerce)

• audience : Business, BizOps

• downtime? : 1-3 days

Predictive

• used for :
•building recommendation

products (e.g. social
networking, shopping)

•updating fraud prevention
endpoints (e.g. security,
payments, e-commerce)

• audience : Customers

• downtime? : < 1 hour

VS

5

ETL

• used for : loading data into a
Data Warehouse —> Reports
• user-engagement stats (e.g.

social networking)
• product success stats (e.g.

e-commerce)

• audience : Business

• downtime? : 1-3 days

Predictive

• used for :
•building recommendation

products (e.g. social
networking, shopping)

•updating fraud prevention
endpoints (e.g. security,
payments, e-commerce)

• audience : Customers

• downtime? : < 1 hour

VS

Different Types of Data Pipelines

Why Do We Care About Resilience?

6

d4d5d6d7d8

DB

Search
Engines Recommenders

d1 d2 d3

DB

Why Do We Care About Resilience?

7

d4

d6d7d8

Search
Engines Recommenders

d1 d2 d3
d5

Why Do We Care About Resilience?

8

d7d8

DB

Search
Engines Recommenders

d1 d2 d3 d4

d5

d6

Why Do We Care About Resilience?

9

d7d8

DB

Search
Engines Recommenders

d1 d2 d3 d4

d5

d6

Any Take-aways?

10

d7d8

DB

Search
Engines Recommenders

d1 d2 d3 d4

d5

d6
• Bugs happen!

• Bugs in Predictive Data Pipelines have a large blast
radius
• The bugs can affect customers and a company’s

profits & reputation!

Design Goals
Desirable Qualities of a Resilient Data Pipeline

11

12

• Scalable

• Available

• Instrumented, Monitored, & Alert-enabled

• Quickly Recoverable

Desirable Qualities of a Resilient
Data Pipeline

13

• Scalable
• Build your pipelines using [infinitely] scalable components

• The scalability of your system is determined by its least-scalable
component

• Available

• Instrumented, Monitored, & Alert-enabled

• Quickly Recoverable

Desirable Qualities of a Resilient
Data Pipeline

Desirable Qualities of a Resilient
Data Pipeline

14

• Scalable
• Build your pipelines using [infinitely] scalable components

• The scalability of your system is determined by its least-scalable
component

• Available
• Ditto

• Instrumented, Monitored, & Alert-enabled

• Quickly Recoverable

Instrumented

15

Instrumentation must reveal SLA metrics at each stage of the pipeline!

What SLA metrics do we care about? Correctness & Timeliness

• Correctness
• No Data Loss
• No Data Corruption
• No Data Duplication
• A Defined Acceptable Staleness of Intermediate Data

• Timeliness
• A late result == a useless result
• Delayed processing of now()’s data may delay the processing of future

data

Instrumented, Monitored, & Alert-
enabled

16

• Instrument
• Instrument Correctness & Timeliness SLA metrics at each stage of the

pipeline

• Monitor
• Continuously monitor that SLA metrics fall within acceptable bounds (i.e.

pre-defined SLAs)

• Alert
• Alert when we miss SLAs

Desirable Qualities of a Resilient
Data Pipeline

17

• Scalable
• Build your pipelines using [infinitely] scalable components

• The scalability of your system is determined by its least-scalable
component

• Available
• Ditto

• Instrumented, Monitored, & Alert-enabled

• Quickly Recoverable

Quickly Recoverable

18

• Bugs happen!

• Bugs in Predictive Data Pipelines have a large blast radius

• Optimize for MTTR

Implementation
Using AWS to meet Design Goals

19

SQS
Simple Queue Service

20

SQS - Overview

21

AWS’s low-latency, highly scalable, highly available message queue

Infinitely Scalable Queue (though not FIFO)

Low End-to-end latency (generally sub-second)

Pull-based

How it Works!

Producers publish messages, which can be batched, to an SQS queue

Consumers

consume messages, which can be batched, from the queue

commit message contents to a data store

ACK the messages as a batch

visibility
timer

SQS - Typical Operation Flow

22

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from
SQS. This starts a visibility timer!

visibility
timer

SQS - Typical Operation Flow

23

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer persists message
contents to DB

visibility
timer

SQS - Typical Operation Flow

24

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: Consumer ACKs message in SQS

visibility
timer

SQS - Time Out Example

25

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from
SQS

visibility
timer

SQS - Time Out Example

26

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer attempts persists
message contents to DB

visibility
time out

SQS - Time Out Example

27

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: A Visibility Timeout occurs & the
message becomes visible again.

visibility
timer

SQS - Time Out Example

28

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

m1

SQS

Step 4: Another consumer reads and
persists the same message

visibility
timer

SQS - Time Out Example

29

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Step 5: Consumer ACKs message in SQS

SQS - Dead Letter Queue

30

SQS - DLQ

visibility
timer

Producer

Producer

Producer

m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Redrive
rule : 2x

m1

SNS
Simple Notification Service

31

SNS - Overview

32

Highly Scalable, Highly Available, Push-based Topic Service

Whereas SQS ensures each message is seen by at least 1 consumer

SNS ensures that each message is seen by every consumer

Reliable Multi-Push

Whereas SQS is pull-based, SNS is push-based

There is no message retention & there is a finite retry count

No Reliable Message Delivery

Can we work around this limitation?

SNS + SQS Design Pattern

33

m1m2

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Reliable
Multi
Push

Reliable
Message
Delivery

SNS + SQS

34

Producer

Producer

Producer

m1m2
Consumer

Consumer

Consumer

DB

m1

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Consumer

Consumer

Consumer

ES

m1

S3 + SNS + SQS Design Pattern

35

m1m2

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Reliable
Multi
Push

Transactions

S3
d1

d2

Batch Pipeline Architecture
Putting the Pieces Together

36

Architecture

37

Architectural Elements

38

A Schema-aware Data format for all data (Avro)

The entire pipeline is built from Highly-Available/Highly-Scalable
components

S3, SNS, SQS, ASG, EMR Spark (exception DB)

The pipeline is never blocked because we use a DLQ for messages we
cannot process

We use queue-based auto-scaling to get high on-demand ingest rates

We manage everything with Airflow

Every stage in the pipeline is idempotent

Every stage in the pipeline is instrumented

ASG
Auto Scaling Group

39

ASG - Overview

40

What is it?

A means to automatically scale out/in
clusters to handle variable load/traffic

A means to keep a cluster/service always
up

Fulfills AWS’s pay-per-use promise!

When to use it?

Feed-processing, web traffic load
balancing, zone outage, etc…

ASG - Data Pipeline

41

importer

importer

importer

importer

Importer
ASG

scale out / in
SQS

DB

ASG : CPU-based

42

Sent

CPU

ACKd/Recvd

CPU-based auto-scaling is
good at scaling in/out to
keep the average CPU
constant

ASG : CPU-based

43

Sent

CPU

Recv

Premature
Scale-in

Premature Scale-in: The CPU drops to noise-levels before all
messages are consumed. This causes scale in to occur while the
last few messages are still being committed resulting in a long time-
to-drain for the queue!

ASG - Queue-based

44

Scale-out: When Visible Messages > 0 (a.k.a. when queue depth > 0)

Scale-in: When Invisible Messages = 0 (a.k.a. when the last in-flight message is
ACK’d)

This causes the
ASG to grow

This causes the
ASG to shrink

Architecture

45

Reliable Hourly Job
Scheduling
Workflow Automation & Scheduling

46

47

Historical Context

Our first cut at the pipeline used cron to schedule hourly runs of Spark

Problem

We only knew if Spark succeeded. What if a downstream task failed?

We needed something smarter than cron that

Reliably managed a graph of tasks (DAG - Directed Acyclic Graph)

Orchestrated hourly runs of that DAG

Retried failed tasks

Tracked the performance of each run and its tasks

Reported on failure/success of runs

Our Needs

Airflow
Workflow Automation & Scheduling

48

Airflow - DAG Dashboard

49

Airflow: It’s easy to manage multiple DAGs

Airflow - Authoring DAGs

50

Airflow: Visualizing a DAG

51

Airflow: Author DAGs in Python! No need to bundle many config files!

Airflow - Authoring DAGs

Airflow - Performance Insights

52

Airflow: Gantt chart view reveals the slowest tasks for a run!

53

Airflow: …And we can easily see performance trends over time

Airflow - Performance Insights

Airflow - Alerting

54

Airflow: …And easy to integrate with Ops tools!

Airflow - Monitoring

55

56

Airflow - Join the Community

With >30 Companies, >100 Contributors , and >2500 Commits,
Airflow is growing rapidly!

We are looking for more contributors to help support the
community!

Disclaimer : I’m a maintainer on the project

Design Goal Scorecard
Are We Meeting Our Design Goals?

57

58

• Scalable

• Available

• Instrumented, Monitored, & Alert-enabled

• Quickly Recoverable

Desirable Qualities of a Resilient
Data Pipeline

59

• Scalable
• Build using scalable components from AWS

• SQS, SNS, S3, ASG, EMR Spark
• Exception = DB (WIP)

• Available
• Build using available components from AWS
• Airflow for reliable job scheduling

• Instrumented, Monitored, & Alert-enabled
• Airflow

• Quickly Recoverable
• Airflow, DLQs, ASGs, Spark & DB

Desirable Qualities of a Resilient
Data Pipeline

Questions? (@r39132)

60

