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Motivation
Why is a Data Pipeline talk in this High 
Availability Track?
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Different Types of Data Pipelines
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ETL 

• used for : loading data related 
to business health into a Data 
Warehouse 
• user-engagement stats (e.g. 

social networking) 
• product success stats (e.g. 

e-commerce) 

• audience : Business, BizOps 

• downtime? : 1-3 days

Predictive 

• used for :  
•building recommendation 

products (e.g. social 
networking, shopping) 

•updating fraud prevention 
endpoints (e.g. security, 
payments, e-commerce) 

• audience : Customers 

• downtime? : < 1 hour

VS
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ETL 

• used for : loading data into a 
Data Warehouse —> Reports 
• user-engagement stats (e.g. 

social networking) 
• product success stats (e.g. 

e-commerce) 

• audience : Business 

• downtime? : 1-3 days

Predictive 

• used for :  
•building recommendation 

products (e.g. social 
networking, shopping) 

•updating fraud prevention 
endpoints (e.g. security, 
payments, e-commerce) 

• audience : Customers 

• downtime? : < 1 hour

VS

Different Types of Data Pipelines



Why Do We Care About Resilience?
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Any Take-aways?
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•  Bugs happen!  

•  Bugs in Predictive Data Pipelines have a large blast 
radius 
•  The bugs can affect customers and a company’s 

profits & reputation! 



Design Goals
Desirable Qualities of a Resilient Data Pipeline
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• Scalable 

• Available 

• Instrumented, Monitored, & Alert-enabled 

• Quickly Recoverable

Desirable Qualities of a Resilient 
Data Pipeline
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• Scalable 
• Build your pipelines using [infinitely] scalable components 

• The scalability of your system is determined by its least-scalable 
component 

• Available 

• Instrumented, Monitored, & Alert-enabled 

• Quickly Recoverable

Desirable Qualities of a Resilient 
Data Pipeline



Desirable Qualities of a Resilient 
Data Pipeline
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• Scalable 
• Build your pipelines using [infinitely] scalable components 

• The scalability of your system is determined by its least-scalable 
component 

• Available 
• Ditto 

• Instrumented, Monitored, & Alert-enabled 

• Quickly Recoverable



Instrumented
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Instrumentation must reveal SLA metrics at each stage of the pipeline! 

What SLA metrics do we care about? Correctness & Timeliness 

•  Correctness  
•  No Data Loss 
•  No Data Corruption 
•  No Data Duplication 
•  A Defined Acceptable Staleness of Intermediate Data 

•  Timeliness 
•  A late result == a useless result 
•  Delayed processing of now()’s data may delay the processing of future 

data 



Instrumented, Monitored, & Alert-
enabled
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• Instrument 
•  Instrument Correctness & Timeliness SLA metrics at each stage of the 

pipeline 

•  Monitor 
•  Continuously monitor that SLA metrics fall within acceptable bounds (i.e. 

pre-defined SLAs) 

•  Alert  
•  Alert when we miss SLAs 



Desirable Qualities of a Resilient 
Data Pipeline
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• Scalable 
• Build your pipelines using [infinitely] scalable components 

• The scalability of your system is determined by its least-scalable 
component 

• Available 
• Ditto 

• Instrumented, Monitored, & Alert-enabled 

• Quickly Recoverable



Quickly Recoverable
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•  Bugs happen!  

•  Bugs in Predictive Data Pipelines have a large blast radius 

•  Optimize for MTTR 



Implementation
Using AWS to meet Design Goals
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SQS
Simple Queue Service
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SQS - Overview
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AWS’s low-latency, highly scalable, highly available message queue

Infinitely Scalable Queue (though not FIFO)

Low End-to-end latency (generally sub-second)

Pull-based

How it Works!

Producers publish messages, which can be batched, to an SQS queue

Consumers 

consume messages, which can be batched, from the queue

commit message contents to a data store

ACK the messages as a batch



visibility  
timer 

SQS - Typical Operation Flow
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from 
SQS. This starts a visibility timer!



visibility  
timer 

SQS - Typical Operation Flow
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer persists message 
contents to DB
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timer 

SQS - Typical Operation Flow
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: Consumer ACKs message in SQS



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from 
SQS



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer attempts persists 
message contents to DB



visibility  
time out 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: A Visibility Timeout occurs & the 
message becomes visible again.
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SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer
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SQS

Step 4: Another consumer reads and 
persists the same message



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Step 5: Consumer ACKs message in SQS



SQS - Dead Letter Queue
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SQS - DLQ
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SNS
Simple Notification Service
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SNS - Overview
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Highly Scalable, Highly Available, Push-based Topic Service

Whereas SQS ensures each message is seen by at least 1 consumer

SNS ensures that each message is seen by every consumer

Reliable Multi-Push

Whereas SQS is pull-based, SNS is push-based

There is no message retention & there is a finite retry count

No Reliable Message Delivery

Can we work around this limitation?



SNS + SQS Design Pattern
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m1m2

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Reliable 
Multi 
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Reliable 
Message 
Delivery 



SNS + SQS
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S3 + SNS + SQS Design Pattern
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Batch Pipeline Architecture
Putting the Pieces Together
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Architecture
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Architectural Elements
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A Schema-aware Data format for all data (Avro)

The entire pipeline is built from Highly-Available/Highly-Scalable 
components

S3, SNS, SQS, ASG, EMR Spark (exception DB)

The pipeline is never blocked because we use a DLQ for messages we 
cannot process

We use queue-based auto-scaling to get high on-demand ingest rates

We manage everything with Airflow

Every stage in the pipeline is idempotent

Every stage in the pipeline is instrumented



ASG
Auto Scaling Group
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ASG - Overview
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What is it? 

A means to automatically scale out/in 
clusters to handle variable load/traffic

A  means to keep a cluster/service always 
up

Fulfills AWS’s pay-per-use promise!

When to use it? 

Feed-processing, web traffic load 
balancing, zone outage, etc…  



ASG - Data Pipeline
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importer

importer

importer

importer

Importer 
ASG

scale out / in
SQS

DB



ASG : CPU-based
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Sent

CPU

ACKd/Recvd

CPU-based auto-scaling is 
good at scaling in/out to 
keep the average CPU 
constant



ASG : CPU-based
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Sent

CPU

Recv

Premature 
Scale-in

Premature Scale-in: The CPU drops to noise-levels before all 
messages are consumed. This causes scale in to occur while the 
last few messages are still being committed resulting in a long time-
to-drain for the queue!



ASG - Queue-based
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Scale-out: When Visible Messages > 0 (a.k.a. when queue depth > 0) 

Scale-in: When Invisible Messages = 0 (a.k.a. when the last in-flight message is 
ACK’d)

This causes the 
ASG to grow

This causes the 
ASG to shrink



Architecture
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Reliable Hourly Job 
Scheduling
Workflow Automation & Scheduling
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Historical Context 

Our first cut at the pipeline used cron to schedule hourly runs of Spark

Problem 

We only knew if Spark succeeded. What if a downstream task failed?

We needed something smarter than cron that

Reliably managed a graph of tasks (DAG - Directed Acyclic Graph)

Orchestrated hourly runs of that DAG

Retried failed tasks

Tracked the performance of each run and its tasks

Reported on failure/success of runs

Our Needs



Airflow
Workflow Automation & Scheduling
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Airflow - DAG Dashboard
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Airflow: It’s easy to manage multiple DAGs



Airflow - Authoring DAGs
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Airflow: Visualizing a DAG
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Airflow: Author DAGs in Python! No need to bundle many config files!

Airflow - Authoring DAGs



Airflow - Performance Insights
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Airflow: Gantt chart view reveals the slowest tasks for a run!
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Airflow: …And we can easily see performance trends over time

Airflow - Performance Insights



Airflow - Alerting
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Airflow: …And easy to integrate with Ops tools!



Airflow - Monitoring
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Airflow - Join the Community

With >30 Companies, >100 Contributors , and >2500 Commits, 
Airflow is growing rapidly! 

We are looking for more contributors to help support the 
community!

Disclaimer : I’m a maintainer on the project



Design Goal Scorecard
Are We Meeting Our Design Goals?
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• Scalable 

• Available 

• Instrumented, Monitored, & Alert-enabled 

• Quickly Recoverable

Desirable Qualities of a Resilient 
Data Pipeline
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• Scalable 
• Build using scalable components from AWS 

• SQS, SNS, S3, ASG, EMR Spark 
• Exception = DB (WIP) 

• Available 
• Build using available components from AWS 
• Airflow for reliable job scheduling 

• Instrumented, Monitored, & Alert-enabled 
• Airflow  

• Quickly Recoverable 
• Airflow, DLQs, ASGs, Spark & DB

Desirable Qualities of a Resilient 
Data Pipeline



Questions? (@r39132)
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