
Microservices and
Monorepos

Match made in heaven?

Sven Erik Knop, Perforce
Software

2

Overview

 Microservices refresher

 Microservices and versioning

 What are Monorepos and why use them?

 These two concepts seem to contradict – why mix them
together?

 The magic of narrow cloning

 A match made in heaven!

3

Why Microservices?

 Monolithic approach:

App

Database

4

Microservices approach

 Individual Services

DatabaseDB DB

5

Versioning Microservices

 Code

 Executables and Containers

 Configuration

 Natural choice: individual repositories for each service Git

 But:

• Security

• Visibility

• Refactoring

• Single change id to rule them all?

6

Monorepo

 Why would you use a monorepo?

 Who is using monorepos?

 How would you use a monorepo?

7

Monorepos: Why would you do this?

 Single Source of Truth for all projects

 Simplified security

 Configuration and Refactoring across entire application

 Single change id across all projects

 Examples:

• Google, Facebook, Twitter, Salesforce, ...

8

Single change across projects

change 314156

9

Monorepos: Antipatterns

User workspace

User workspace

10

Monorepos – view mapping

User workspace

 Map one or more services

 Users only access files they need

 Simplified pushing of changes

11

What does this have to do with Git?

 Git does not support Monorepos

• Limitations on number and size of files, history, contributing users

• Companies have tried and failed

 Android source spread over a thousand Git repositories

• Requires repo and gerrit to work with

12

How can we square this circle?

https://en.wikipedia.org/wiki/Squaring_the_circle

13

Narrow cloning!

 Clone individual projects/services

 Clone a group of projects into a single repo

14

Working with narrowly cloned repos

 Users work normally in Git

 Fetch and push changes from and to monorepo

 SHAs preserved within the same repo

 SHAs for compound repos will differ

• But: common change id in the monorepo

15

So what does Perforce have to offer?

 The vendor talk bit ...

16

Who we are

 Perforce helps delivery teams build
complex products collaboratively,
securely and efficiently.

 Commonly used for…

• Software

• Games

• Electronics

• Animations

• Chipsets

• Medical Devices

• IoT

Global 24x7 Support

17

Managing IP for market leaders

Chips
Games

& Animation
Cloud/SW Electronics Systems Automotive

18

 Hybrid Workflows

• Distributed & Centralized Version control,

code reviews, simple file sharing

• Happy developers & contributors

 Every File

• Efficiently handles large, often binary, data

 DevOps Stay Happy & Productive

• A mainline source for all builds even with

distributed development

 All IP Safe & Secure

• Granular permissions, theft risk monitoring

Perforce Helix

CONTRIBUTORS

CONSUMERS

19

More performance
More uptime
More control

Better coordination
Binaries

Large files
Protect IP

Regulations/audit

More code
More frequently
More freedom
More flexibility

All text
Small files

Code anywhere
Local repos

Perforce Helix

Serves developers Serves operations

Coordinate Development & Operations at Scale

20

GitSwarm: Integrated Git Management

Based on GitLab CE

 Self-service repos

 Merge requests

 Permissions

 Issue tracking, etc.

21

Mirrored to the Helix Versioning Engine

 Automatic bidirectional mirroring with Helix servers

 Helix enforces security, down to the file level if needed

 Immutable content for audit trails, regulated industries, etc.

 Support for Git LFS that works for DevOps

22

Work Locally, Scale Globally

 Distributed environment
for developers

 Git experience and workflow
equivalent to well known tools

 Single source of truth

 Perforce reliability and stability
protecting your assets

HelixGitSwarm

23

Microservices and Monorepos?

Narrow cloning ...

