
 Types Working
For You

Richard Dallaway, @d6y

underscore.io

Modern type system
with lots of power

Two Themes

Straightforward Scala

Types Working for Us

Progression

Part 1 Straightforward Scala

Part 2 Functional Programming

Part 3 Typelevel Programming

Straightforward Scala

— Part 1 —

The only problem was we had no idea what the code
was doing at first.

We came across a strange symbol we hadn’t seen in
our projects before

The spaceship operator <|*|>

Someone said out loud “what the hell is that?”

http://jimplush.com/talk/

The only problem was we had no idea what the code
was doing at first.

We came across a strange symbol we hadn’t seen in
our projects before

The spaceship operator <|*|>

Someone said out loud “what the hell is that?”

http://jimplush.com/talk/

The only problem was we had no idea what the code
was doing at first.

We came across a strange symbol we hadn’t seen in
our projects before

The spaceship operator <|*|>

Someone said out loud “what the hell is that?”

http://jimplush.com/talk/

The only problem was we had no idea what the code
was doing at first.

We came across a strange symbol we hadn’t seen in
our projects before

The spaceship operator <|*|>

Someone said out loud “what the hell is that?”

http://jimplush.com/talk/

“It’s about having a maintainable
code base where you can have  
people cross projects easily and
get new hires up to speed rapidly”

Power!

Protect the team from it

and

Get the benefit of it

What can we do?

1. Expressions, types, & values

2. Objects and classes

3. Algebraic data types

4. Structural recursion

5. Sequencing computation

6. Type classes

1. Expressions, types, & values

2. Objects and classes

3. Algebraic data types

4. Structural recursion

5. Sequencing computation

6. Type classes

Algebraic data types

Structural recursion

Algebraic data types
data into code

Structural recursion

transformation

Model data with logical
ors and logical ands

A website visitor is:
• anonymous; or
• logged in

A logged in user has:
• an ID; and
• facts we know about

them

Two Patterns

and (product types)
or (sum types)

Sum and product together
make algebraic data types

Structure of the code
follows the structure of

the data

A website visitor is:
• anonymous; or
• logged in

sealed trait Visitor

case class Anonymous()  
 extends Visitor

case class User()  
 extends Visitor

A logged in user has:
• an ID; and
• facts we know about

them 

An anonymous has:
• an ID

sealed trait Visitor

case class Anonymous()  
 extends Visitor

case class User()  
 extends Visitor

sealed trait Visitor

case class Anonymous(id: Id) 
 extends Visitor

case class User(id: Id, facts: Set[Fact]) 
 extends Visitor

Structural recursion

 def serveAd(v: Visitor): Advert = ???

Structure of the code
follows the structure of

the data

 def serveAd(v: Visitor): Advert = ???

def serveAd(v: Visitor): Advert =
 v match {
 case User(_, info) => relevantAd(info)
 case Anonymous(id) => adRotation(id)
 }

def serveAd(v: Visitor): Advert =
 v match {
 case User(_, info) => relevantAd(info)
 case Anonymous(id) => adRotation(id)
 }

def serveAd(v: Visitor): Advert =
 v match {
 case User(_, info) => relevantAd(info)
 case Anonymous(id) => adRotation(id)
 }

Structure

ADT & Structural Recursion

Straightforward part of Scala.

Clear, productive, occurs frequently.

Be opinionated in what you use.

Structure helps us.

Help from FP Ideas

— Part 2 —

Combining lists

Concatenating strings

Union of sets

Combining things in a loop

Chaining logical operations

Adding numbers

Building up a JavaScript expression

Showing errors in a UI

...

A combine function and

an empty value

Addition

Empty Combine

0 +

Set

Empty Combine

Set.empty union

For any T

Empty Combine

A zero for T

A way to
combine two Ts

and give me
back a T

A combine function and

an empty value

Monoid

A combine function and

an empty value

…and laws

The boss asks…

What’s the total visits to the web site?

def report(vs: List[Int]): Int = ???

For any T

Empty Combine

A zero for T

A way to
combine two Ts

and give me
back a T

For any T

trait Monoid[T] {

 def empty: T

 def combine(x: T, y: T): T

}

val addition = new Monoid[Int] {

 def empty = 0

 def combine(x: Int, y: Int) = x+y

}

fold

def fold(vs: List[Int]): Int =

 vs match {

 case Nil => 0

 case v :: rest => v + fold(rest)

 }

 fold(List(1,2,3)) 
 // 6

fold(1,2,3)

 1 + fold(2,3)

 2 + fold(3)

 3 + fold()

 0

0 + 3 + 2 + 1 = 6

fold(1,2,3)

 1 + fold(2,3)

 2 + fold(3)

 3 + fold()

 0

0 + 3 + 2 + 1 = 6

fold(1,2,3)

 1 + fold(2,3)

 2 + fold(3)

 3 + fold()

 0

0 + 3 + 2 + 1 = 6

fold(1,2,3)

 1 + fold(2,3)

 2 + fold(3)

 3 + fold()

 0

0 + 3 + 2 + 1 = 6

fold(1,2,3)

 1 + fold(2,3)

 2 + fold(3)

 3 + fold()

 0

0 + 3 + 2 + 1 = 6

fold(1,2,3)

 1 + fold(2,3)

 2 + fold(3)

 3 + fold()

 0

0 + 3 + 2 + 1 = 6

def fold(vs: List[Int]): Int =

 vs match {

 case Nil => 0

 case v :: rest => v + fold(rest)

 }

 fold(List(1,2,3)) 
 // 6

def fold(vs: List[Int], m: Monoid[Int]): Int =

 vs match {

 case Nil => 0

 case v :: rest => v + fold(rest)

 }

 fold(List(1,2,3), addition)  
 // 6

def fold(vs: List[Int], m: Monoid[Int]): Int =

 vs match {

 case Nil => m.empty

 case v :: rest => m.combine(v, fold(rest,m))

 }

 fold(List(1,2,3), addition)  
 // 6

def fold[T](vs: List[T], m: Monoid[T]): T =

 vs match {

 case Nil => m.empty

 case v :: rest => m.combine(v, fold(rest,m))

 }

 fold(List(1,2,3), addition)  
 // 6

Split on cases,

inspect values you have

def fold[T](vs: List[T], m: Monoid[T]): T =

 vs match {

 case Nil => ???

 case v :: rest => ???

 }

 fold(List(1,2,3), addition)  
 // 6

def fold[T](vs: List[T], m: Monoid[T]): T =

 vs match {

 case Nil => m.empty

 case v :: rest => ???

 }

 fold(List(1,2,3), addition)  
 // 6

But back to Monoids…

The boss asks…

What’s the total visits to the web site?

 def report(vs: List[Int]): Int =

 fold(vs, addition)

Benefits

Composition

Flexibility

Problem Solving

The boss asks…

How many distinct visitors?

def report(vs: List[Visitor]): Int = ???

Set

Empty Combine

Set.empty union

The boss says…

Argh!  
The servers are OutOfMemory

HyperLogLog

Empty Combine

new HLL() HLL.plus

Armon Dadgar (Papers We Love, 2015) 
 “Bloom Filters and HyperLogLog”

The boss asks…

Who are the really keen  
visitors to the site?

Count-Min Sketch

Empty Combine

new CMS() CMS.plus

Laura Bledaite (Scala eXchange 2015)  
“Count-Min Sketch in Real Data Applications”

We can safely run  
a parallel version  

of fold

Laws

a + 0 = a

(a + b) + c = a + (b + c)

Identity & Associativity

a combine empty = a

(a combine b) combine c  
= a combine (b combine c)

a combine b

combine combine

c d e f

Errors: 10 Warnings: 0

Its a monoid

I know this

…so we fold

Summary

Types and laws give us flexibility &
help lead us to solutions.

They help us every day.

A Taste of Typelevel

— Part 3 —

Date Metric

Mon Low

Tue High

csv(
 List(“Date”, “Metric”),
 List(
 List(“Mon”, “Low”),
 List(“Tue”, “High”))
)

Date

Mon Low

Tue High

csv(
 List(“Date”),
 List(
 List(“Mon”, “Low”),
 List(“Tue”, “High”))
)

How can we prevent that error
happening again?

def csv(
 hdrs: List[String],
 rows: List[List[String]]
): String = ???

def csv[N <: Nat](
 hdrs: List[String],
 rows: List[List[String]]
): String = ???

import shapeless._
import syntax.sized._

def csv[N <: Nat](
 hdrs: Sized[List[String], N],
 rows: List[Sized[List[String], N]]
): String = ???

import shapeless._
import syntax.sized._

csv(
 Sized(“Date”),
 List(

 Sized(“Mon”, “Low”),
 Sized(“Tue”, “High”))

)

csv(
 Sized(“Date”),
 List(

 Sized(“Mon”, “Low”),
 Sized(“Tue”, “High”))

)

Sized[List, 1]

Sized[List, 2]

How?

Sized(“Date”) constructs
Sized[Nat]

Nat implements numbers as
types

 sealed trait Nat
 trait Succ[P <: Nat] extends Nat
 trait Zero extends Nat

Zero 0
Succ[Zero] 1
Succ[Succ[Zero]] 2
Succ[Succ[Succ[Zero]]] 3

 sealed trait Nat
 trait Succ[P <: Nat] extends Nat
 trait Zero extends Nat

sealed trait Nat
trait Succ[P <: Nat] extends Nat
trait Zero extends Nat

type One = Succ[Zero]
type Two = Succ[One]

implicitly[Succ[Zero] =:= One]
implicitly[Succ[One] =:= Succ[Succ[Zero]]]

sealed trait Nat
trait Succ[P <: Nat] extends Nat
trait Zero extends Nat

type One = Succ[Zero]
type Two = Succ[One]

implicitly[Succ[Zero] =:= One]
implicitly[Succ[One] =:= Succ[Succ[Zero]]]

sealed trait Nat
trait Succ[P <: Nat] extends Nat
trait Zero extends Nat

type One = Succ[Zero]
type Two = Succ[One]

implicitly[Succ[Zero] =:= One]
implicitly[Succ[One] =:= Succ[Succ[Zero]]]

sealed trait Nat
trait Succ[P <: Nat] extends Nat
trait Zero extends Nat

type One = Succ[Zero]
type Two = Succ[One]

implicitly[Succ[Zero] =:= Two]
error:
 Cannot prove that Succ[Zero] =:= Two.

Merging Fields

case class User( 
 id : Long, 
 name : String, 
 email : Option[String])

val user = User( 
 123L,  
 “Bruce Wayne”, 
 Some(“bruce@example.org”))

PATCH /user/123

{  
 “name” : “Batman” 
}

case class User( 
 id : Long, 
 name : String, 
 email : Option[String])

case class Update( 
 name : Option[String], 
 email : Option[Option[String]])

val user = User( 
 123L,  
 “Bruce Wayne”, 
 Some(“bruce@example.org”))

val update = Update( 
 Some(“Batman”),  
 None)

How do we get to…

User( 
 123L,  
 “Batman”,  
 Some(“bruce@example.org”))

Bulletin

https://github.com/davegurnell/bulletin

How?

User String Option[String] …

Option[String]
Option[ 

Option[String]
]

…Update

How?

User String Option[String] …

Option[String]
Option[ 

Option[String]
]

…Update

Head

How?

User String Option[String] …

Option[String]
Option[ 

Option[String]
]

…Update

Head The Rest…

How?

Type constraints

Implicit methods

HLists

Labelled generic

Macros

…

val user = User( 
 123L,  
 "Bruce Wayne”, 
 Some(“bruce@example.org”))

val update = Update( 
 Some(“Batman”),  
 None)

import bulletin._

val updated = user.merge(update)

// User( 
// 123L,  
// “Batman”,  
// Some(“bruce@example.org”))

val user = User( 
 123L,  
 "Bruce Wayne”, 
 Some(“bruce@example.org”))

val update = Update( 
 Some(“Batman”),  
 None)

import bulletin._

val updated = user.merge(update)

// User( 
// 123L,  
// “Batman”,  
// Some(“bruce@example.org”))

Summary

The compiler can help (maybe more than
you thought).

Reduce boilerplate code.

Using Power Tools

Can go one of two ways…

Using Power Tools

Can go one of two ways…

What the hell
is that?

It’s a monoid! 
I know this

Simple

Types

Power

Share

2008

 ‘The name Scala stands for
“scalable language.” 

  
The language is so named
because it was designed

to grow with the demands of its
users.’

What have we seen?

Some straightforward parts of Scala 
—Clear, maintainable, helpful

Encoding ideas in types  
—flexibility, leads us to solutions 

 
Let the compiler do it  

—when it make sense for your demands

Summary

Scala scaling with your needs  
—be opinionated in what you use, more when needed

Types working for us, not stopping us  
—functional programming, share what you learn

Thanks!
Richard Dallaway, @d6y

underscore.io

Thanks!
Richard Dallaway, @d6y

underscore.io

Amanda Laucher
Wesley Reisz
Noel Welsh

Dave Gurnell
Miles Sabin

Jono Ferguson
Julio Capote

Alessandro Zoffoli

