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Are you fully in control when you code?
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reduce

(reduce f coll) (reduce f val coll)

f should be a function of 2 arguments. If val is not supplied,
returns the result of applying f to the first 2 items in coll, then
applying f to that result and the 3rd item, etc. If coll contains no
items, f must accept no arguments as well, and reduce returns the
result of calling f with no arguments. If coll has only 1 item, it
is returned and f is not called. If val is supplied, returns the
result of applying f to val and the first item in coll, then

applying f to that result and the 2nd item, etc. If coll contains no
items, returns val and f is not called.
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It val is supplied, returns the result of applying f to
val and the first item in coll, then applying f to that
result and the 2nd item, etc.

If coll contains no items, returns val and f is not
called.
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L et’'s start with a test...

(ns clojure-functions. reduce-spec
(:require [speclj.core :refer :all]
[clojure-functions. reduce :refer :alll))
(describe "test my-reduce function"

(it "result 1 for addition function, with val of 1 and empty collection"
(should= 1 (my-reduce + 1 '()))))

(ns clojure-functions. reduce)

(defn my-reduce [f val colll
val)
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A second test could have a single element in the
collection.

(it "result 2 for + function, with val of 1 and coll containing element 1"
(should= 2 (my-reduce + 1 '(1))))

(defn my-reduce [f val colll
(if (empty? coll)

val
(f val ( coll))))
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With more than one item In the collection...

(it "result 6 for + function, val of 1 and coll with elements 2 and 3"
(should= 6 (my-reduce + 1 [2 3])))

(defn my-reduce [f val coll]
(if (empty? coll)
val
(my-reduce f (f val ( coll)) ( coll))))

We can add tests with different functions,
collections and initial values.
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It val iIs not supplied, returns the result of applying
f to the first 2 items in coll, then applying f to that
result and the 3rd item, etc.
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No val...

(it "result 1 for + function, no val, and coll containing element 1"
(should= 1 (my-reduce + [1])))

(defn my-reduce
([f coll]
(my-reduce f ( coll) ( coll)))
([f val colll
(if (empty? coll)
val
(my-reduce f (f val ( coll)) ( coll)))))

We can add tests with multiple items in coll.
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It coll contains no items, t must accept no
arguments as well, and reduce returns the result of
calling t with no arguments.
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No val and empty coll...

(it "result @ for addition on empty list"
(should= @ (my-reduce + [])))

(it "result 1 for multiplication on empty list"
(should= 1 (my-reduce = [])))

(defn my-reduce
([f colll
(if (empty? coll)
(f)
(my-reduce f ( coll) ( coll))))
([f val coll]
(if (empty? coll)
val
(my-reduce f (f val ( coll)) ( coll)))))
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How many unit tests are enough to give us
confidence that our function behaves in the same
was as reduce?
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Property-based tests

Make statements about the expected behaviour of the code
that should hold true for the entire domain of possible
inputs. These statements are then verified for many different
(pseudo)randomly generated inputs.

Clojure test.check
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(def colls
(gen/one-of [
(gen gen/any)
(gen gen/any)
(gen/set gen/any)
(gen gen/any gen/any)
gen/bytes

gen/string]))

(defn red-fn
([1 true)

([a b] b))

(defspec my-reduce-property-test 1000
(prop/for-all [c colls v gen/any]
(and
(= (reduce red-fn c) (my-reduce red-fn c))
(= (reduce red-fn v c) (my-reduce red-fn v c)))))
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Functions requiring two arguments can be passed
to reduce with only a single argument

(defn f [xy] (+ X y))

(reduce f [1])
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Care needed with functions that cannot be
evaluated with no arguments

(reduce - ())
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count clojure.core

Available since ) (source

(count coll)

Returns the number of items in the collection. (count nil) returns
@. Also works on strings, arrays, and Java Collections and Maps
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Taking a TDD approach again...

(it "result @ for an empty list"
(should= @ (my-count '())))

(it "result @ for nil"
(should= @ (my-count nil)))

(it "result 1 for a list of one item"
(should= 1 (my-count '(1))))

(defn my-count [colll
(if (empty? coll)
0
1))
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Make tests with more than one element pass

(defn my-count [coll]
( [coll coll result 0]
(if (empty? coll)
result
( ( coll) (inc result)))))
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With a passing test suite, refactor

(defn my-count [coll]
( [coll coll result 0]
(if (empty? coll)
result
( ( coll) (inc result)))))

(defn my-count [coll]

(my-reduce (fn [result _1 (inc result)) 0 coll))
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Again, property-based tests can confirm that our
function behaves the same as the core function

(defspec my-count-property-test 1000
(prop/for-all [c colls]
(= (count c) (my-count c))))
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filter clojure.core

source

Fitterpredy> (filter pred coll)

Returns a lazy sequence of the items in coll for which
(pred item) returns true. pred must be free of side-effects.

—Returrs—a—transducer—whepRe——cottection—3s—provideds
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Filter returns a lazy sequence

(it "result empty lazy sequence when filtering for zero on an empty vector"
(should= clojure.lang.LazySeq (class (my-filter zero? [])))
(should= @ (my-count (my-filter zero? [1))))

(defn my-filter [pred coll]

(lazy-seq coll))
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Build function up recursively?

(it "result even numbers when filtering for even numbers"
(should= '(0 2 4 6 8) (my-filter even? ( 10))))

(defn my-filter [pred colll
( [input coll result []]
(if (empty? input)
(lazy-seq result)

( ( input)
(17 (pred ( input))
( result ( input))
result)))))
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We can add more tests, and these pass

But, our function is not lazy!

We just convert the result to a lazy sequence
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cons is lazy; conjis not

conj depends on the collection type, so is realised
iImmediately

cons adds an item to the start of a collection, and can be
evaluated lazily
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Retfactor lazily

(defn my-filter [pred coll]
(lazy-seq (when (seq coll)

(if (pred ( coll))
( ( coll) (my-filter pred ( coll)))
(my—filter pred ( coll))))))
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How do we get a vector containing just the even
numbers given an input of [0 12 34 5]?

( [] (my-filter even? [0 1 2 3 4 5]))
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map clojure.core

source

€mep—F>— (map f coll) (map f cl c2) (map f cl c2 c3) (map f cl c2 c3 & colls)

Returns a lazy sequence consisting of the result of applying f to
the set of first items of each coll, followed by applying f to the
set of second items in each coll, until any one of the colls 1is
exhausted. Any remaining items in other colls are ignored. Function
f should accept number-of-colls arguments. Returrs—a—transducer—when-

Ao—cottection—3s—provided
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For a single collection, write our map function
analogously to our ftilter function

(defn my-map

([f colll
(lazy-seq (when (seq coll)
( (f ( coll)) (my-map f ( coll)))))))
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We can extend this approach tfor two collections

(defn my-map

([f colll
(lazy-seq (when (seq coll)
( (f ( coll)) (my-map f ( coll))))))
([f c1 c2]
(lazy-seq (when (and (seq cl) (seq c2))
( (& cl) ( c2)) (my-map f ( cl) ( c2)))))))
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What about more than two collections? Build up
recursively?

(defn my-map

([f colll
(lazy-seq (when (seq coll)
( (f ( coll)) (my-map f ( coll))))))
([f c1 c2]
(lazy-seq (when (and (seq cl1) (seq c2))
( (f ( cl) ( c2)) (my-map f ( cl) ( c2))))))
([f c1 c2 & morel
( [c1 c1 ¢c2 c2 r morel

(if (empty? r)
(my-map f c1 c2)
( (my-map f c1 c2) ( r) ( r))))))
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Does this work for non-commutative functions?

(it "maps with non-commutative functions"
(should= '([:a :d :g] [:b :e :h] [:c :f :i])

(apply my-map [[:a :b :cll:d :e :fl[:g :h :i1]1)))
(defn my-map
([f colll
(lazy-seq (when (seq coll)
( (f ( coll)) (my-map f ( coll))))))
([f c1 c2]
(lazy-seq (when (and (seq cl) (seq c2))
( (f ( cl) ( c2)) (my-map f ( cl) ( c2))))))
([f c1 c2 & morel
( [c1 c1 c2 c2 r more]

(if (empty? r)
(my-map f c1 c2)
( (my-map f c1 c2) ( r) ( r))))))
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How can build lazily?

1) Take all of the input collections, and put them into a single sequence.

2) Reorder this sequence, so the first collection is all of the first
elements, the second collection is all of the second elements, etc.

3) Map the result of applying the function to each reordered collection in
turn
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Our map function

(defn my-map

([f colll
(lazy-seq (when (seq coll)
( (f ( coll)) (my-map f ( coll))))))
([f c1 & colls]
(my-map #(apply f %) (reorder ( cl colls)))))
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Our map function

(declare my-map)

(defn reorder [c]
(when (every? seq c)

( (my-map c) (reorder (my-map c)))))
(defn my-map
([f coll]
(lazy-seq (when (seq coll)
( (f ( coll)) (my-map f ( coll))))))
([f c1 & colls]
(my-map #(apply f %) (reorder ( cl colls)))))
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pmap clojure.core

J \Source

(pmap f coll) (pmap f coll & colls)

Like map, except f is applied in parallel. Semi-lazy in that the
parallel computation stays ahead of the consumption, but doesn't
realize the entire result unless required. Only useful for
computationally intensive functions where the time of f dominates

the coordination overhead.
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(defn long-running-job
([& args]
(Thread/sleep 1000)
(apply + 10 args)))

(it "test long-running-job time with single element"
(should (= 1.0 ( [st (System/nanoTime)]
(long-running-job 1)
(/ (- (System/nanoTime) st) 1e9)))))

(it "test long-running-job time with map and collection"
(should (= 1.0 ( [st (System/nanoTime)]
( long-running-job [1 2 3 4])
(/ (- (System/nanoTime) st) 1e9)))))

map is lazy, and the time we are measuring Is the time to
make a new lazy-seq, not the time to actually execute it
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(it "test time long-running job with map"
(should (= 4.0 (test-time long-running-job [1 2 3 4]))))

(defn test-time
([map-type f & coll]
( [st (System/nanoTime)]
(apply realize-lazy-seq map-type f coll)
(/ (- (System/nanoTime) st) 1e9))))
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(it "test time long-running job with map"
(should (< 4.0 (test-time long-running-job [1 2 3 41))))

(defn realize-lazy-seq
( [map-type f & args]

( [res (apply map-type f args)]
(when res
( (next res))))))

(defn test-time
([map-type f & colll
( [st (System/nanoTime)]
(apply realize-lazy-seq map-type f coll)
(/ (- (System/nanoTime) st) 1e9))))
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(it "test time long-running job with my-pmap"
(should (> 1.1 (test—-time my-pmap long-running-job [1 2 3 4]))))

(defn my-pmap
([f colll
( [results (my-map #(future (f %)) coll)]
(my-map deref results))))

Fails
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(it "test time long-running job with my-pmap"
(should (> 1.1 (test—-time my-pmap long-running-job [1 2 3 4]))))

We need to generate all of the futures before we start to
deref

Remember that conjis not lazy...

(defn my—pmap
([f coll]
( [results (my-reduce #( %1 (future (f %2))) []1 coll)]
(my-map deref results))))
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Extend to multiple collections as we did with my-map

(defn my-pmap
([f colll
( [results (my-reduce #( %1 (future (f %2))) [] coll)]
(my-map deref results)))
([f c1 & colls]
(my-pmap #(apply f %) (reorder ( cl colls)))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESSSSSSSSSEESSL



The behavior of all the functions can be confirmed
to be the same as the core functions using
property-based tests
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