Understanding Core
Clojure Functions

% Dr. Jonathan Graham

8th Light

http://jonathangraham.github.io twitter: @graham_jp

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

http://jonathangraham.github.io twitter: @graham_jp

300

JossTT

by |

http://jonathangraham.github.io twitter: @graham_jp

Are you fully in control when you code?

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

reduce

(reduce f coll) (reduce f val coll)

f should be a function of 2 arguments. If val is not supplied,
returns the result of applying f to the first 2 items in coll, then
applying f to that result and the 3rd item, etc. If coll contains no
items, f must accept no arguments as well, and reduce returns the
result of calling f with no arguments. If coll has only 1 item, it
is returned and f is not called. If val is supplied, returns the
result of applying f to val and the first item in coll, then

applying f to that result and the 2nd item, etc. If coll contains no
items, returns val and f is not called.

http://jonathangraham.github.io twitter: @graham_jp

clojure.core

.U (Source

It val is supplied, returns the result of applying f to
val and the first item in coll, then applying f to that
result and the 2nd item, etc.

If coll contains no items, returns val and f is not
called.

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

L et’'s start with a test...

(ns clojure-functions. reduce-spec
(:require [speclj.core :refer :all]
[clojure-functions. reduce :refer :alll))
(describe "test my-reduce function"

(it "result 1 for addition function, with val of 1 and empty collection"
(should= 1 (my-reduce + 1 '()))))

(ns clojure-functions. reduce)

(defn my-reduce [f val colll
val)

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

A second test could have a single element in the
collection.

(it "result 2 for + function, with val of 1 and coll containing element 1"
(should= 2 (my-reduce + 1 '(1))))

(defn my-reduce [f val colll
(if (empty? coll)

val
(f val (coll))))
http://jonathangraham.github.io twitter: @graham_jp

With more than one item In the collection...

(it "result 6 for + function, val of 1 and coll with elements 2 and 3"
(should= 6 (my-reduce + 1 [2 3])))

(defn my-reduce [f val coll]
(if (empty? coll)
val
(my-reduce f (f val (coll)) (coll))))

We can add tests with different functions,
collections and initial values.

http://jonathangraham.github.io twitter: @graham_jp

It val iIs not supplied, returns the result of applying
f to the first 2 items in coll, then applying f to that
result and the 3rd item, etc.

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

No val...

(it "result 1 for + function, no val, and coll containing element 1"
(should= 1 (my-reduce + [1])))

(defn my-reduce
([f coll]
(my-reduce f (coll) (coll)))
([f val colll
(if (empty? coll)
val
(my-reduce f (f val (coll)) (coll)))))

We can add tests with multiple items in coll.

http://jonathangraham.github.io twitter: @graham_jp

It coll contains no items, t must accept no
arguments as well, and reduce returns the result of
calling t with no arguments.

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

No val and empty coll...

(it "result @ for addition on empty list"
(should= @ (my-reduce + [])))

(it "result 1 for multiplication on empty list"
(should= 1 (my-reduce = [])))

(defn my-reduce
([f colll
(if (empty? coll)
(f)
(my-reduce f (coll) (coll))))
([f val coll]
(if (empty? coll)
val
(my-reduce f (f val (coll)) (coll)))))

http://jonathangraham.github.io twitter: @graham_jp

How many unit tests are enough to give us
confidence that our function behaves in the same
was as reduce?

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Property-based tests

Make statements about the expected behaviour of the code
that should hold true for the entire domain of possible
inputs. These statements are then verified for many different
(pseudo)randomly generated inputs.

Clojure test.check

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

(def colls
(gen/one-of [
(gen gen/any)
(gen gen/any)
(gen/set gen/any)
(gen gen/any gen/any)
gen/bytes

gen/string]))

(defn red-fn
([1 true)

([a b] b))

(defspec my-reduce-property-test 1000
(prop/for-all [c colls v gen/any]
(and
(= (reduce red-fn c) (my-reduce red-fn c))
(= (reduce red-fn v c) (my-reduce red-fn v c)))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Functions requiring two arguments can be passed
to reduce with only a single argument

(defn f [xy] (+ X y))

(reduce f [1])

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Care needed with functions that cannot be
evaluated with no arguments

(reduce - ())

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

count clojure.core

Available since) (source

(count coll)

Returns the number of items in the collection. (count nil) returns
@. Also works on strings, arrays, and Java Collections and Maps

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Taking a TDD approach again...

(it "result @ for an empty list"
(should= @ (my-count '())))

(it "result @ for nil"
(should= @ (my-count nil)))

(it "result 1 for a list of one item"
(should= 1 (my-count '(1))))

(defn my-count [colll
(if (empty? coll)
0
1))

http://jonathangraham.github.io twitter: @graham_jp

Make tests with more than one element pass

(defn my-count [coll]
([coll coll result 0]
(if (empty? coll)
result
((coll) (inc result)))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

With a passing test suite, refactor

(defn my-count [coll]
([coll coll result 0]
(if (empty? coll)
result
((coll) (inc result)))))

(defn my-count [coll]

(my-reduce (fn [result _1 (inc result)) 0 coll))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Again, property-based tests can confirm that our
function behaves the same as the core function

(defspec my-count-property-test 1000
(prop/for-all [c colls]
(= (count c) (my-count c))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

filter clojure.core

source

Fitterpredy> (filter pred coll)

Returns a lazy sequence of the items in coll for which
(pred item) returns true. pred must be free of side-effects.

—Returrs—a—transducer—whepRe——cottection—3s—provideds

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Filter returns a lazy sequence

(it "result empty lazy sequence when filtering for zero on an empty vector"
(should= clojure.lang.LazySeq (class (my-filter zero? [])))
(should= @ (my-count (my-filter zero? [1))))

(defn my-filter [pred coll]

(lazy-seq coll))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Build function up recursively?

(it "result even numbers when filtering for even numbers"
(should= '(0 2 4 6 8) (my-filter even? (10))))

(defn my-filter [pred colll
([input coll result []]
(if (empty? input)
(lazy-seq result)

((input)
(17 (pred (input))
(result (input))
result)))))
http://jonathangraham.github.io twitter: @graham_jp

We can add more tests, and these pass

But, our function is not lazy!

We just convert the result to a lazy sequence

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

cons is lazy; conjis not

conj depends on the collection type, so is realised
iImmediately

cons adds an item to the start of a collection, and can be
evaluated lazily

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Retfactor lazily

(defn my-filter [pred coll]
(lazy-seq (when (seq coll)

(if (pred (coll))
((coll) (my-filter pred (coll)))
(my—filter pred (coll))))))
http://jonathangraham.github.io twitter: @graham_jp

300

JossTT

by |

http://jonathangraham.github.io twitter: @graham_jp

How do we get a vector containing just the even
numbers given an input of [0 12 34 5]?

([] (my-filter even? [0 1 2 3 4 5]))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

map clojure.core

source

€mep—F>— (map f coll) (map f cl c2) (map f cl c2 c3) (map f cl c2 c3 & colls)

Returns a lazy sequence consisting of the result of applying f to
the set of first items of each coll, followed by applying f to the
set of second items in each coll, until any one of the colls 1is
exhausted. Any remaining items in other colls are ignored. Function
f should accept number-of-colls arguments. Returrs—a—transducer—when-

Ao—cottection—3s—provided

http://jonathangraham.github.io twitter: @graham_jp

For a single collection, write our map function
analogously to our ftilter function

(defn my-map

([f colll
(lazy-seq (when (seq coll)
((f (coll)) (my-map f (coll)))))))
http://jonathangraham.github.io twitter: @graham_jp

We can extend this approach tfor two collections

(defn my-map

([f colll
(lazy-seq (when (seq coll)
((f (coll)) (my-map f (coll))))))
([f c1 c2]
(lazy-seq (when (and (seq cl) (seq c2))
((& cl) (c2)) (my-map f (cl) (c2)))))))
http://jonathangraham.github.io twitter: @graham_jp

What about more than two collections? Build up
recursively?

(defn my-map

([f colll
(lazy-seq (when (seq coll)
((f (coll)) (my-map f (coll))))))
([f c1 c2]
(lazy-seq (when (and (seq cl1) (seq c2))
((f (cl) (c2)) (my-map f (cl) (c2))))))
([f c1 c2 & morel
([c1 c1 ¢c2 c2 r morel

(if (empty? r)
(my-map f c1 c2)
((my-map f c1 c2) (r) (r))))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Does this work for non-commutative functions?

(it "maps with non-commutative functions"
(should= '([:a :d :g] [:b :e :h] [:c :f :i])

(apply my-map [[:a :b :cll:d :e :fl[:g :h :i1]1)))
(defn my-map
([f colll
(lazy-seq (when (seq coll)
((f (coll)) (my-map f (coll))))))
([f c1 c2]
(lazy-seq (when (and (seq cl) (seq c2))
((f (cl) (c2)) (my-map f (cl) (c2))))))
([f c1 c2 & morel
([c1 c1 c2 c2 r more]

(if (empty? r)
(my-map f c1 c2)
((my-map f c1 c2) (r) (r))))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

How can build lazily?

1) Take all of the input collections, and put them into a single sequence.

2) Reorder this sequence, so the first collection is all of the first
elements, the second collection is all of the second elements, etc.

3) Map the result of applying the function to each reordered collection in
turn

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Our map function

(defn my-map

([f colll
(lazy-seq (when (seq coll)
((f (coll)) (my-map f (coll))))))
([f c1 & colls]
(my-map #(apply f %) (reorder (cl colls)))))
http://jonathangraham.github.io twitter: @graham_jp

Our map function

(declare my-map)

(defn reorder [c]
(when (every? seq c)

((my-map c) (reorder (my-map c)))))
(defn my-map
([f coll]
(lazy-seq (when (seq coll)
((f (coll)) (my-map f (coll))))))
([f c1 & colls]
(my-map #(apply f %) (reorder (cl colls)))))
http://jonathangraham.github.io twitter: @graham_jp

pmap clojure.core

J \Source

(pmap f coll) (pmap f coll & colls)

Like map, except f is applied in parallel. Semi-lazy in that the
parallel computation stays ahead of the consumption, but doesn't
realize the entire result unless required. Only useful for
computationally intensive functions where the time of f dominates

the coordination overhead.

http://jonathangraham.github.io twitter: @graham_jp

(defn long-running-job
([& args]
(Thread/sleep 1000)
(apply + 10 args)))

(it "test long-running-job time with single element"
(should (= 1.0 ([st (System/nanoTime)]
(long-running-job 1)
(/ (- (System/nanoTime) st) 1e9)))))

(it "test long-running-job time with map and collection"
(should (= 1.0 ([st (System/nanoTime)]
(long-running-job [1 2 3 4])
(/ (- (System/nanoTime) st) 1e9)))))

map is lazy, and the time we are measuring Is the time to
make a new lazy-seq, not the time to actually execute it

http://jonathangraham.github.io twitter: @graham_jp

(it "test time long-running job with map"
(should (= 4.0 (test-time long-running-job [1 2 3 4]))))

(defn test-time
([map-type f & coll]
([st (System/nanoTime)]
(apply realize-lazy-seq map-type f coll)
(/ (- (System/nanoTime) st) 1e9))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

(it "test time long-running job with map"
(should (< 4.0 (test-time long-running-job [1 2 3 41))))

(defn realize-lazy-seq
([map-type f & args]

([res (apply map-type f args)]
(when res
((next res))))))

(defn test-time
([map-type f & colll
([st (System/nanoTime)]
(apply realize-lazy-seq map-type f coll)
(/ (- (System/nanoTime) st) 1e9))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

(it "test time long-running job with my-pmap"
(should (> 1.1 (test—-time my-pmap long-running-job [1 2 3 4]))))

(defn my-pmap
([f colll
([results (my-map #(future (f %)) coll)]
(my-map deref results))))

Fails

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

(it "test time long-running job with my-pmap"
(should (> 1.1 (test—-time my-pmap long-running-job [1 2 3 4]))))

We need to generate all of the futures before we start to
deref

Remember that conjis not lazy...

(defn my—pmap
([f coll]
([results (my-reduce #(%1 (future (f %2))) []1 coll)]
(my-map deref results))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

Extend to multiple collections as we did with my-map

(defn my-pmap
([f colll
([results (my-reduce #(%1 (future (f %2))) [] coll)]
(my-map deref results)))
([f c1 & colls]
(my-pmap #(apply f %) (reorder (cl colls)))))

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

The behavior of all the functions can be confirmed
to be the same as the core functions using
property-based tests

http://jonathangraham.github.io twitter: @graham_jp
GGGGGGGSSSSSSSSSSSSSSSSESEEESSSSSSSSSEESSL

300

JossTT

by |

http://jonathangraham.github.io twitter: @graham_jp

Understanding Core
Clojure Functions

% Dr. Jonathan Graham

8th Light

http://jonathangraham.github.io twitter: @graham_jp

