
Building a Modern Security
Engineering Team

zane@signalsciences.com
@zanelackey

Who	is	this	guy	anyway?

• Built and led the Etsy Security Team
– Spoiler alert: what this presentation is about

• Co-founded Signal Sciences

This talk is about lessons learned being at the
forefront of the shift to agile/continuous

deployment/DevOps

For security teams, the world has changed in
fundamental ways:

– Code deployment is now near-instantaneous

For security teams, the world has changed in
fundamental ways:

– Code deployment is now near-instantaneous

– Merging of development and operations means
more people with production access

For security teams, the world has changed in
fundamental ways:

– Code deployment is now near-instantaneous

– Merging of development and operations means
more people with production access

– Cost of attack has significantly dropped

Near-instantaneous deployment?

An example: Etsy pushes to production 50 times
a day on average

Constant iteration in production via feature
flags, ramp ups, A/B testing

But doesn’t the rapid
rate of change mean

things are less
secure?!

Actually,	the	opposite	is	
true

They key to realize is vulnerabilities occur in all
development methodologies

…But there’s no such thing as an out-of-band
patch in continuous deployment

They key to realize is vulnerabilities occur in all
development methodologies

…But there’s no such thing as an out-of-band
patch in continuous deployment

Compared to:

“We’ll rush that security fix. It will go out … in
about 6 weeks.”

- Former vendor at Etsy

What makes continuous deployment safe?

What makes continuous deployment safe?

Visibility

Source:	http://www.slideshare.net/mikebrittain/advanced-topics-in-continuous-deployment

The same hard lessons are slowly shifting to
security

Ex: Which of these is a quicker way to spot an
attack?

Surface security info for everyone, not just the
security team

“Don’t treat security as a binary event”
- @ngalbreath

Building	a	rad	culture
*Mullets	sold	separately	

In the shift to continuous deployment, speed
increases by removing organizational blockers

Trying to make security a blocker means you get
routed around

Instead, the focus becomes on incentivizing
teams to reach out to security

Keys to incentivizing conversation:

– Don’t be a jerk. This should be obvious, but
empathy needs to be explicitly set as a core part of
your teams culture.

Keys to incentivizing conversation:

– Don’t be a jerk. This should be obvious, but
empathy needs to be explicitly set as a core part of
your teams culture.

– Make realistic tradeoffs. Don’t fall in to the trap
of thinking every issue is critical.
• Ex: Letting low risk issues ship with a reasonable

remediation window buys you credibility for when
things actually do need to be addressed immediately.

Keys to incentivizing conversation:

– Coherently explain impact. “This would allow all
our user data to be compromised if the attacker did
X & Y” paints a clear picture, where “The input
validation in this function is weak” does not.

Keys to incentivizing conversation:

– Coherently explain impact. “This would allow all
our user data to be compromised if the attacker did
X & Y” paints a clear picture, where “The input
validation in this function is weak” does not.

– Reward communication with security team. T-
Shirts, gift cards, and high fives all work
(shockingly) well.

Keys to incentivizing conversation:

– Take the false positive hit yourself. Don’t send
unverified issues to dev and ops teams. When
issues come in, have the secteam verify and make
first attempt at patch.

– Scale via team leads. Build relationships with
technical leads from other teams so they make
security part of their teams culture.

Keys to incentivizing conversation:

– Take the false positive hit yourself. Don’t send
unverified issues to dev and ops teams. When
issues come in, have the secteam verify and make
first attempt at patch.

– Scale via team leads. Build relationships with
technical leads from other teams so they make
security part of their teams culture.

Access	restrictions

Startups begin with a simple access control
policy: Everyone can access everything

As organization grow there will be more pressure
to institute access policies

The key to remember is don’t take away
capabilities

Methodology:

1. Figure out what capability is needed

2. Build an alternate way to perform the needed
function in a safe way

3. Transition the organization over to the safe
way

4. Alert on any usage of the old unsafe way

Methodology:

1. Figure out what capability is needed

2. Build an alternate way to perform the needed
function in a safe way

3. Transition the organization over to the safe
way

4. Alert on any usage of the old unsafe way

Methodology:

1. Figure out what capability is needed

2. Build an alternate way to perform the needed
function in a safe way

3. Transition the organization over to the safe
way

4. Alert on any usage of the old unsafe way

Methodology:

1. Figure out what capability is needed

2. Build an alternate way to perform the needed
function in a safe way

3. Transition the organization over to the safe
way

4. Alert on any usage of the old unsafe way

EX: SSH access to production systems

Security policy goal: Eliminate unneeded access
to production systems

– Why do developers do it? Ex: To view error logs

– Build alternate approach: Send the logs to central
logging service (ex: elasticsearch, splunk, etc)

– Publicize the new tooling to the organization

– After majority of transition, alert on any logins to
production systems by non-sysops

Security policy goal: Eliminate unneeded access
to production systems

– Why do developers do it? Ex: To view error logs

– Build alternate approach: Send the logs to central
logging service (ex: logstash, splunk, etc)

– Publicize the new tooling to the organization

– After majority of transition, alert on any logins to
production systems by non-sysops

Security policy goal: Eliminate unneeded access
to production systems

– Why do developers do it? Ex: To view error logs

– Build alternate approach: Send the logs to central
logging service (ex: logstash, splunk, etc)

– Publicize the new tooling to the organization

– After majority of transition, alert on any logins to
production systems by non-sysops

Security policy goal: Eliminate unneeded access
to production systems

– Why do developers do it? Ex: To view error logs

– Build alternate approach: Send the logs to central
logging service (ex: logstash, splunk, etc)

– Publicize the new tooling to the organization

– After majority of transition, alert on any logins to
production systems by non-sysops

Increasing	attacker	cost

Bug bounties/disclosure programs are
tremendously useful. If you’re not working
towards launching one, strongly consider it.

Common concerns about launching a bounty:

1. Budgetary concerns. Money is almost never the
main motivation for researchers, you can launch
a bounty with just a hall of fame and still get
great submissions.

1. Risk of inviting attacks. You’re already getting
attacked continuously, you’re just not getting the
results.

Common concerns about launching a bounty:

1. Budgetary concerns. Money is rarely the main
motivation for participants, you can launch a
bounty with just a hall of fame and still get great
submissions.

1. Risk of inviting attacks. You’re already getting
attacked continuously, you’re just not getting the
results.

Common concerns about launching a bounty:

1. Budgetary concerns. Money is rarely the main
motivation for participants, you can launch a
bounty with just a hall of fame and still get great
submissions.

1. Risk of inviting attacks. It’s the Internet. You’re
already getting pentested continuously, you’re
just not receiving the report.

The ultimate goals of a bug bounty are threefold:

1. Incentivize people to report issues to you in the
first place

2. Drive up cost of vulnerability discovery and
exploitation for attackers

3. Provide an external validation of if your security
program is working (or not)

The ultimate goals of a bug bounty are threefold:

1. Incentivize people to report issues to you in the
first place

2. Drive up cost of vulnerability discovery and
exploitation for attackers

3. Provide an external validation of if your security
program is working (or not)

The ultimate goals of a bug bounty are threefold:

1. Incentivize people to report issues to you in the
first place

2. Drive up cost of vulnerability discovery and
exploitation for attackers

3. Provide an external validation of where your
security program is working (and where it’s not)

Before you launch, record what vulnerability
classes you expect to see and what you don’t.

Compare this against the issues actually
reported.

Before you launch, record what vulnerability
classes you expect to see and what you don’t.

Compare this against the issues actually
reported.

Keep metrics on:

– Number of bugs reported and severities

– Time to remediation of reported issues

You want both of these metrics to trend down over
time

Practical considerations:

– Inform all teams before bounty launch, especially
non-engineering teams
• Ex: Customer Support

– Attacks will start almost immediately

For Etsy bug bounty launch, time from
announcement to first attack: 13min

Practical considerations:

– Inform all teams before bounty launch, especially
non-engineering teams
• Ex: Customer Support

– Attacks will start almost immediately

For Etsy bug bounty launch, time from
announcement to first attack: 13min

Practical considerations:

– Your first 2-3 weeks will be intense. Have as many
people as you can dedicated to triage and response

Practical considerations:

– Operationally review any helper systems for
scaling problems beforehand
• When 10-100x traffic hits helper systems your security

team uses, what falls over?

– Money almost never the overriding factor, hall of
fame is

– Researchers are generally great to interact with

Practical considerations:

– Operationally review any helper systems for
scaling problems beforehand
• When 10-100x traffic hits helper systems your security

team uses, what falls over?

– Money is almost never the main motivation for
bounty participants, hall of fame credit is

– Researchers are generally great to interact with

Practical considerations:

– Operationally review any helper systems for
scaling problems beforehand.
• When 10-100x traffic hits helper systems your security

team uses, what falls over?

– Money is almost never the main motivation for
bounty participants, hall of fame credit is

– Key to great researcher interaction is frequent and
transparent communication

TL;DR
(The section formerly known as “Conclusions”)

• Adapt security team culture to DevOps and
continuous deployment by:
– Surfacing security monitoring and metrics
– Incentivize discussions with the security team
– When creating policy, don’t take away capabilities

• Drive up attacker cost through bug bounty
programs, countering phishing, and running
realistic attack simulations

Thanks!

zane@signalsciences.com @zanelackey

