The Power of the Log

LSM & Append Only Data Structures
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Kafka: a Streaming Platform

Connectors
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KAFKA’s Distributed Log
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Messaging is a Log-Shaped Problem
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Not all problerns are Log-Shaped



Many problems benefit from being
addressed in a “log-shaped” way



Supporting Lookups



Lookups in a log
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Trees provide Selectivity
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But the overarching structure implies Dispersed Writes
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Log Structured Merge Trees
1996

The Log-Structured Merge-Tree (LSM-Tree)

Patrick O'Neill, Edward Cheng?
Dieter Gawlick3, Elizabeth O'Neil?
To be published: Acta Informatica

ABSTRACT. High-performance transaction system applications typically insert rows in a
History table to provide an activity trace; at the same time the transaction system generates log
records for purposes of system recovery. Both types of generated information can benefit from
efficient indexing. An example in a well-known setting is the TPC-A benchmark application,
modified to support efficient queries on the History for account activity for specific accounts.
This requires an index by account-id on the fast-growing History table. Unfortunately, stan-
dard disk-based index structures such as the B-tree will effectively double the 1/0 cost of the
transaction to maintain an index such as this in real time, increasing the total system cost up to
fifty percent. Clearly a method for maintaining a real-time index at low cost is desirable. The
Log-Structured Merge-tree (LSM-tree) is a disk-based data structure designed to provide
low-cost indexing for a file experiencing a high rate of record inserts (and deletes) over an
extended period. The LSM-tree uses an algorithm that defers and batches index changes, cas-
cading the changes from a memory-based component through one or more disk components in an
efficient manner reminiscent of merge sort. During this process all index values are contin-
uously accessible to retrievals (aside from very short locking periods), either through the
memory component or one of the disk components. The algorithm has greatly reduced disk arm
movements compared to a traditional access methods such as B-trees, and will improve cost-
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Used in a range of modern databases

* BigTable *  MongoDB
* HBase * WiredTiger
* [evelDB * Cassandra
* SQLitey * MySQL

* RocksDB * TnfluxDB ..



If a systerms have a natural grain, it
s one formed of sequential
operations which favour locality
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Caching & Prefetching
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Write efficiency comes from
amortising writes info sequential
operafions
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FIGURE

Random, disk
Sequential, disk
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Sequential, SSD
Random, memory

Sequential, memory

=confluent

Comparing Random and Sequential Access in Disk and Memory

316 values/sec
G3.2M values/sec
1924 values/sec
42 2M values/sec
36.7M values/sec
358.2M values/sec
| | | | | | | &
10 100 1000 10¢ 10° 108 107 1

Note; Disk tests were carried out on a freshly booted machine [a Windows 2003 server with 64-GB RAM and
eight 15,000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching,
SSD testused alatest-generation Intel high-performance SATA SSD,

Taken from ACMQueue: The Pathologies of Big Data



So if we go against the grain of
the systerm, RAM can actually be
slower than disk



Going against the grain means dispersed
operations that break locality
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The beauty of the log lies in its

sequentially
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LSM is about re-imagining search
as as a “log-shaped” problem



Arrange writes To be Append Only
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Avoid dispersed writes




Simple LSM



Writes are collected in memory
Writes
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When enough have buffered, sort
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Write the sorted file to disk
Whrites
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Repeat..
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Batching -> Fast Sequential IO
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That's the core write path



What about reads?



Search reverse-chronologically

(3) Ts “bob” here: 1) Is “bob’ here?
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Worst Case

We consult every file



We might have a lot of files
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LSM naturally optimises for writes,
over reads

This is a reasonable tradeoff to make
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Optimizing reads is easier than
opTimising writes
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Create levels
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Separate thread merges old files, de-
duplicating them
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Separate thread merges old files, de-
duplicating them.
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Merging process is reminiscent of
merge sort



Take this further with levels
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But single reads still require many
individual lookups:

* Number of searches: T _
— | per bose level :._:‘
— | per level above ml Y T e}
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Optirisation a

Caching & Friends
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Add Mermory

ie. More Caching / Pre-fetch



Read Ahead & Prefetch
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If only there was a mMore efficient
way To avoid searching each filel



Elven Magic_?
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Bloom Filters
Bit Set

Answers the question:
Do I need to look in this file to ; ‘ [ I H“/( ‘((

find the value for this keyp
Hash Function
Size -> probability of false positive ‘




Bloom Filters

* As keyspace grows:
— plcallision) increases O

— Index size is fixed !
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* Space efficient, probabi\isﬂc
data structure




Many more degrees of freedom for

optimising reads
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Log Structured Merge Trees

* A collection of small, iImmutable indexes
* All sequential operations, de-duplicate by Mmerging files

* Index/Bloom in RAM tfo increase read performance



Subtleties

* Writes are | x IO (blind writes) , rather than a x IO's
(read + mMmodify)

* Batching writes decreases write amplification. In trees
leaf pages must be updated.



Irmutability =» Simpler locking semantics
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Does it work?

Lots of real world examples
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Measureable in the real world

Disk 10 | query, maxid1=1B

B 'KBlg
rocksdb.zlib I wKBI/q
orig5710.zlib
orig5626.zlib

orig5710.none

origs626.none

0 1.2 2.4 3.6 48 6 7.2 8.4 96 108

10/ query (KB)

Innodb vs MyRocks results, taken from Mark Callaghan's blog: http.//eitly/amhWTip

There are many subtleties. Take all benchmarks with a pinch of salt.



tlements of Beauty

* Reframing the problerm to be Log-Centric. To go with
the grain of the system

* Optimise for the harder problem

* Compartmentdlises writes (coordination) to a single
point. Reads -> immutable structures.



Applies in Many other areas

* Sequentiality
— Datfaboses: write ahead logs

— Columnar databases: Merge Joins

— Kafka
* Immutabiity

— Snapshot isolation over explicit locking.

— Replication (state machines replication)



Log-Centric Approaches Work in
Applications too
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How Applications or Services
share state



Log-Centric Services

o Read-Replica
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Log-Centric Services
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Log-Centric Services

o Read-Replica
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tlements of Beauty

* Reframing the problerm to be Log-Centric. To go with
the grain of the system

* Optimise for the harder problem

* Compartmentdlises writes (coordination) to a single
point. Reads -> immutable structures.



Decentralised Design

In both dotabase design as well as in
application development
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The Log is the central building block

Pushes us towards the natural grain of
the system
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The Log

A single unifying abstraction

--:E:omﬂuer\t



References
LSM.

* bLSM paper-

Other

* Pat Helland Tmmutability)

* Peter Ballis (Coordination Avoidance):
* Joy Kreps: I Heart Logs (OReilly a0m)
* The Data Dichotomy:



Thank you

ebenstopford
http://benstopford.com
beneconfluent io

Zconfluent




