
The Power of the Log
LSM & Append Only Data Structures

Ben Stopford
Confluent Inc

@benstopford

The Log Connectors Connectors

Producer Consumer

Streaming Engine

Kafka: a Streaming Platform

KAFKA’s Distributed Log

Linear Scans Append Only

Messaging is a Log-Shaped Problem

Linear Scans Append Only

Not all problems are Log-Shaped

Many problems benefit from being
addressed in a “log-shaped” way

Supporting Lookups

Lookups in a log

Head Tail

Trees provide Selectivity

bob dave fred hary mike steve vince

Index

But the overarching structure implies Dispersed Writes

bob dave fred hary mike steve vince

Random IO

Log Structured Merge Trees
1996

Used in a range of modern databases

•  BigTable

•  HBase

•  LevelDB

•  SQLite4

•  RocksDB

•  MongoDB

•  WiredTiger

•  Cassandra

•  MySQL

•  InfluxDB ...

If a systems have a natural grain, it
is one formed of sequential

operations which favour locality

Caching & Prefetching

L3 cache
L2 cache

L1 cache

Pre-fetch is your
friend

CPU Caches

Page Cache

Application-level
caching

Disk Controller

Write efficiency comes from
amortising writes into sequential

operations

Taken from ACMQueue: The Pathologies of Big Data

So if we go against the grain of
the system, RAM can actually be

slower than disk

Going against the grain means dispersed
operations that break locality

Poor Locality Good Locality

The beauty of the log lies in its
sequentially

Linear Scans Append Only

LSM is about re-imagining search
as as a “log-shaped” problem

Arrange writes to be Append Only

Append Only
Journal

(Sequential IO)

Update in Place
Ordered File
(Random IO)

Bob = Carpenter

Bob = Carpenter

Bob = Cabinet Maker

Bob = Cabinet Maker

Avoid dispersed writes

Simple LSM

Writes are collected in memory
Writes

sort

write to disk

older
files

small
index file

RAM

When enough have buffered, sort.
Writes

write to disk

older
files

small
index file

Batched
sorted

RAM

Write the sorted file to disk
Writes

write to disk

older
files

Small, sorted
immutable file

Batched
sorted

Repeat...
Writes

write to disk

Older files New files

Batched
sorted

Batching -> Fast Sequential IO
Writes

write to disk

Older files New files

Batched

Sorted
memtable

That’s the core write path

What about reads?

Search reverse-chronologically

older
files

newer
files

(1) Is “bob” here?

(2) Is “bob” here?

(3) Is “bob” here?

(4) Is “bob” here?

Worst Case
We consult every file

We might have a lot of files!

LSM naturally optimises for writes,
over reads

This is a reasonable tradeoff to make

Optimizing reads is easier than
optimising writes

Optimisation 1
Bound the number of files

Create levels

Level-0

Level-1

Separate thread merges old files, de-
duplicating them.

Level-0

Level-1

Separate thread merges old files, de-
duplicating them.

Level-0

Level-1

Merging process is reminiscent of
merge sort

Take this further with levels

Level-0

Level-1

Level-2

Level-3
Memtable

But single reads still require many
individual lookups:

•  Number of searches:
–  1 per base level
–  1 per level above

Optimisation 2
Caching & Friends

Add Memory
i.e. More Caching / Pre-fetch

Read Ahead & Prefetch

L3 cache
L2 cache

L1 cache

Pre-fetch is your
friend

Page Cache

Disk Controller

If only there was a more efficient
way to avoid searching each file!

Elven Magic?

Bloom Filters
Answers the question:

Do I need to look in this file to
find the value for this key?

Size -> probability of false positive
Key

Hash Function

Bit Set

Bloom Filters
•  Space efficient, probabilistic

data structure

•  As keyspace grows:
–  p(collision) increases

–  Index size is fixed

Many more degrees of freedom for
optimising reads

RAM

Disk

file metadata
& bloom filter

Log Structured Merge Trees
•  A collection of small, immutable indexes

•  All sequential operations, de-duplicate by merging files

•  Index/Bloom in RAM to increase read performance

Subtleties
•  Writes are 1 x IO (blind writes) , rather than 2 x IO’s

(read + modify)

•  Batching writes decreases write amplification. In trees
leaf pages must be updated.

Immutability => Simpler locking semantics

Only
memtable
is mutable

Does it work?
Lots of real world examples

Measureable in the real world

•  Innodb vs MyRocks results, taken from Mark Callaghan’s blog: http://bit.ly/2mhWT7p

•  There are many subtleties. Take all benchmarks with a pinch of salt.

Elements of Beauty
•  Reframing the problem to be Log-Centric. To go with

the grain of the system.

•  Optimise for the harder problem

•  Compartmentalises writes (coordination) to a single
point. Reads -> immutable structures.

Applies in many other areas
•  Sequentiality
–  Databases: write ahead logs

–  Columnar databases: Merge Joins

–  Kafka
•  Immutability
–  Snapshot isolation over explicit locking.

–  Replication (state machines replication)

Log-Centric Approaches Work in
Applications too

Event Sourcing
•  Journaling of

state changes

•  No “update in
place”

Object

Journal

+ 10.36
- 12.12
+ 23.70
+ 13.33

CQRS
Client

Command Query

Write
Optimised

Read
Optimised

log

How Applications or Services
share state

Log-Centric Services

Writer
Read-Replica

Read-Replica

Read-Replica

Writes are localised
to a single service

Log-Centric Services

Writer
Read-Replica

Read-Replica

Read-Replica Immutable log

Log-Centric Services

Writer
Read-Replica

Read-Replica

Read-Replica
Many, independent
read replicas

Elements of Beauty
•  Reframing the problem to be Log-Centric. To go with

the grain of the system.

•  Optimise for the harder problem

•  Compartmentalises writes (coordination) to a single
point. Reads -> immutable structures.

Decentralised Design
In both database design as well as in

application development

The Log is the central building block

Pushes us towards the natural grain of
the system

The Log
A single unifying abstraction

References
LSM:

•  benstopford.com/2015/02/14/log-structured-merge-trees/

•  smalldatum.blogspot.co.uk/2017/02/using-modern-sysbench-to-compare.html

•  www.quora.com/How-does-the-Log-Structured-Merge-Tree-work

•  bLSM paper: http://bit.ly/2mT7Vje

Other

•  Pat Helland (Immutability) cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

•  Peter Ballis (Coordination Avoidance): http://bit.ly/2m7XxnI

•  Jay Kreps: I Heart Logs (O’Reilly 2014)

•  The Data Dichotomy: http://bit.ly/2hk9c2K

Thank you

@benstopford
http://benstopford.com

ben@confluent.io

