The Power of the Log

LSM & Append Only Data Structures

s ISMe
— ENGINecR
KT CONTLUEN T
— Ex THOUGHT LIORKS
+UK FiNavce

ebenstopford

Kafka: a Streaming Platform

Connectors

=confluent

«

The Log

Streaming Engine

&

Producer Q Q Consumer
SN

Connectors

&3 Karka

KAFKA’s Distributed Log

|]

VRRNREERERY | T,

P)

Append Only Linear Scans

Messaging is a Log-Shaped Problem

|]

VRRNREERERY | T,

P)

Append Only Linear Scans

Not all problerns are Log-Shaped

Many problems benefit from being
addressed in a “log-shaped” way

Supporting Lookups

Lookups in a log

Tai me Head
BN

Trees provide Selectivity

-
. = Firi
et ﬂm§©

bob dave fred hary mike sfeve Vince

But the overarching structure implies Dispersed Writes

—
Randorm IO I—/:
andom T_—j/ —= Lé%c)
b

ob dave Fred hary mike steve Vince

A S T

Log Structured Merge Trees
1996

The Log-Structured Merge-Tree (LSM-Tree)

Patrick O'Neill, Edward Cheng?
Dieter Gawlick3, Elizabeth O'Neil?
To be published: Acta Informatica

ABSTRACT. High-performance transaction system applications typically insert rows in a
History table to provide an activity trace; at the same time the transaction system generates log
records for purposes of system recovery. Both types of generated information can benefit from
efficient indexing. An example in a well-known setting is the TPC-A benchmark application,
modified to support efficient queries on the History for account activity for specific accounts.
This requires an index by account-id on the fast-growing History table. Unfortunately, stan-
dard disk-based index structures such as the B-tree will effectively double the 1/0 cost of the
transaction to maintain an index such as this in real time, increasing the total system cost up to
fifty percent. Clearly a method for maintaining a real-time index at low cost is desirable. The
Log-Structured Merge-tree (LSM-tree) is a disk-based data structure designed to provide
low-cost indexing for a file experiencing a high rate of record inserts (and deletes) over an
extended period. The LSM-tree uses an algorithm that defers and batches index changes, cas-
cading the changes from a memory-based component through one or more disk components in an
efficient manner reminiscent of merge sort. During this process all index values are contin-
uously accessible to retrievals (aside from very short locking periods), either through the
memory component or one of the disk components. The algorithm has greatly reduced disk arm
movements compared to a traditional access methods such as B-trees, and will improve cost-

narfarmance in doamaine whare Adicelk arm c~ncte fAar incarte with ftraditincnal acrrcce mothnde

Used in a range of modern databases

* BigTable * MongoDB
* HBase * WiredTiger
* [evelDB * Cassandra
* SQLitey * MySQL

* RocksDB * TnfluxDB ..

If a systerms have a natural grain, it
s one formed of sequential
operations which favour locality

Zconfluent

Caching & Prefetching
| T

Disk Controller

Page Cache (
CPU Caches L3 coche [T
La cache :
Li cache)
Application-level N1l ,,, Do foteh ic Jour
cac\f\ing / ‘ Frlend

HHII

Write efficiency comes from
amortising writes info sequential
operafions

| SREE \[/\
-

FIGURE

Random, disk
Sequential, disk
Random, SSD
Sequential, SSD
Random, memory

Sequential, memory

=confluent

Comparing Random and Sequential Access in Disk and Memory

316 values/sec
G3.2M values/sec
1924 values/sec
42 2M values/sec
36.7M values/sec
358.2M values/sec
| | | | | | | &
10 100 1000 10¢ 10° 108 107 1

Note; Disk tests were carried out on a freshly booted machine [a Windows 2003 server with 64-GB RAM and
eight 15,000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching,
SSD testused alatest-generation Intel high-performance SATA SSD,

Taken from ACMQueue: The Pathologies of Big Data

So if we go against the grain of
the systerm, RAM can actually be
slower than disk

Going against the grain means dispersed
operations that break locality

IW F;rl - —

= "
i&)\’\—: &—

~

Poor Locadlity Good Locality

The beauty of the log lies in its

sequentially

|]

[T | T,

e 2

Append Only Linear Scans

LSM is about re-imagining search
as as a “log-shaped” problem

Arrange writes To be Append Only

Bob - Carpenter

‘ | | .l. \ ‘ Update in Place
r_\ _— Jl—_’_

Ordered File
(Random IO)

Bob - Cabinet Maker
Bob - Carpenter

| T ‘<W s
—] ppend Only
Y

Journal
(Sequential IO)

Bob - Cabinet Maker

Avoid dispersed writes

Simple LSM

Writes are collected in memory
Writes

NN

B .5 @ RAM

Ww B
- B

When enough have buffered, sort

Whrites

\ Batched
—

B.m W _-
Te @ K
- o B

RAM

Tl g

Write the sorted file to disk
Whrites

\Q BaTChed SOFTed
N

Y o) D) —7 write to disk

- @ B

T { l H/ D Sma\\, sorted

immMutable file

Repeat..
Whrites

\ bl sorted
—

D W -
%) 1a5) -) =/ wrife o disk
- g @

) Older files HH m “Hl]) JLLLETY New filles

Batching -> Fast Sequential IO

Whrites

Sorted
y = - \A

N

1) 2
D) -0) —7 /erﬁre fo disk
- o B -

- Older flles | | [[1) 111 LD TLLLD New fies

That's the core write path

What about reads?

Search reverse-chronologically

(3) Ts “bob” here: 1) Is “bob’ here?

der (TTTD) @D D IED e

files

@) Is “bob’ heres (2) Is “bob” here?

=confluent

Worst Case

We consult every file

We might have a lot of files
(T71D) i (i) e
@ @ [[(11) TLLED

(11D iy (i) s
(71D iy (i) s

LSM naturally optimises for writes,
over reads

This is a reasonable tradeoff to make

=confluent

Optimizing reads is easier than
opTimising writes

=confluent

Optirmisation |

Bound the number of files

Create levels

{ | W Level-

(T D D) THED Levelo

Separate thread merges old files, de-
duplicating them

/7 {m Level-

[m 1D LD TLED Levelo

Separate thread merges old files, de-
duplicating them.

T
/'
D DO D I Lewlo

Level-l

Merging process is reminiscent of
merge sort

Take this further with levels

Level-3 il

A = Memtable
Level-a @ IV E
/

But single reads still require many
individual lookups:

* Number of searches: T _
— | per bose level :._:‘
— | per level above ml Y T e}

=confluent

=confluent

Optirisation a

Caching & Friends

=confluent

Add Mermory

ie. More Caching / Pre-fetch

Read Ahead & Prefetch
| T

Disk Controller [)

Page Cache (
L3 cache ‘ -)
cac

HHHH

/ i Pre-fetch is your

HHH friend

If only there was a mMore efficient
way To avoid searching each filel

Elven Magic_?

=confluent

Bloom Filters
Bit Set

Answers the question:
Do I need to look in this file to ; ‘ [I H“/(‘((

find the value for this keyp
Hash Function
Size -> probability of false positive ‘

Bloom Filters

* As keyspace grows:
— plcallision) increases O

— Index size is fixed !

=confluent

* Space efficient, probabi\isﬂc
data structure

Many more degrees of freedom for

optimising reads

file Metadata
_d»_b\oom filter

Log Structured Merge Trees

* A collection of small, iImmutable indexes
* All sequential operations, de-duplicate by Mmerging files

* Index/Bloom in RAM tfo increase read performance

Subtleties

* Writes are | x IO (blind writes) , rather than a x IO's
(read + mMmodify)

* Batching writes decreases write amplification. In trees
leaf pages must be updated.

Irmutability =» Simpler locking semantics

-l —| Only
@ 0 o ;:—: mermtable
is Mutable

Does it work?

Lots of real world examples

=confluent

ZZconfluent

Measureable in the real world

Disk 10 | query, maxid1=1B

B 'KBlg
rocksdb.zlib I wKBI/q
orig5710.zlib
orig5626.zlib

orig5710.none

origs626.none

0 1.2 2.4 3.6 48 6 7.2 8.4 96 108

10/ query (KB)

Innodb vs MyRocks results, taken from Mark Callaghan's blog: http.//eitly/amhWTip

There are many subtleties. Take all benchmarks with a pinch of salt.

tlements of Beauty

* Reframing the problerm to be Log-Centric. To go with
the grain of the system

* Optimise for the harder problem

* Compartmentdlises writes (coordination) to a single
point. Reads -> immutable structures.

Applies in Many other areas

* Sequentiality
— Datfaboses: write ahead logs

— Columnar databases: Merge Joins

— Kafka
* Immutabiity

— Snapshot isolation over explicit locking.

— Replication (state machines replication)

Log-Centric Approaches Work in
Applications too

tvent Sourcing

* Journaling of

state changes

* No “update in Journal

place” > £ 10.36

- Al
¥ 23.70

Object + (333

|

CQRS

Client

\Cownnmand S

|
f

| @

F?

\/\/r|Te
Optimised

log

>‘F>)

Read
Opftimised

How Applications or Services
share state

Log-Centric Services

o Read-Replica

A\

Writes are locdlised | LI -2 O Head-fieplca
o a single service \\I

O Read-Replica

Log-Centric Services

o Read-Replica

Writer Q\ A
\Vd

\ J i \X/‘_) O Read-Replica
7

Inmmutable ‘Og O Read-Rep\ica

Log-Centric Services

o Read-Replica

Writer Q\ A
\Vd

\ J i \X/‘_) O Read-Replica
\

Many, independent \I |
read replicas —> O Read-Replica

tlements of Beauty

* Reframing the problerm to be Log-Centric. To go with
the grain of the system

* Optimise for the harder problem

* Compartmentdlises writes (coordination) to a single
point. Reads -> immutable structures.

Decentralised Design

In both dotabase design as well as in
application development

Zconfluent

The Log is the central building block

Pushes us towards the natural grain of
the system

=confluent

The Log

A single unifying abstraction

--:E:omﬂuer\t

References
LSM.

* bLSM paper-

Other

* Pat Helland Tmmutability)

* Peter Ballis (Coordination Avoidance):
* Joy Kreps: I Heart Logs (OReilly a0m)
* The Data Dichotomy:

Thank you

ebenstopford
http://benstopford.com
beneconfluent io

Zconfluent

