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A UK banking licence is authorised by the PRA and 
regulated by the PRA and FCA1, allowing deposit-
taking and balance sheet lending. Once granted, 
it allows firms to passport across Europe, accessing 
500 million consumers.

Changes in the authorisation regime in March 
20132 introduced a new two-stage process, under 
which a firm is first granted a banking licence with 
restrictions.

This is followed by a “mobilisation” phase during 
which final capital is raised and IT systems are 
completed, before launching to the public.

Monzo was granted a licence with restrictions 
in August 2016 and is planning to launch current 
accounts in the first half of 2017.

We received a UK banking licence in August 2016!

1 Prudential Regulation Authority, Financial Conduct Authority 

2 http://www.bankofengland.co.uk/publications/Documents/joint/barriers.pdf
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Single Responsibility 
Principle



Bounded Context



Well defined 
Interfaces





Why Go?
Memory Managed 
Statically Typed 
Excellent Concurrency 
Perfect for simple, small, network services



Lightweight 
Concurrency



Goroutines



// Blocking function call 

handleRequest()



// Function runs concurrently 
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"Do not communicate by 
sharing memory; instead, share 

memory by communicating."
 - Effective Go



Channels 











Simplicity



Static Linking 
Stdlib 
etc 
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Service Discovery 
Load Balancing 

Timeouts and Expirations 
Retries  

Rate Limiting 
Connection Pooling  

Circuit Breaking 
Failure Detection  

Metrics and Tracing  
Interrupts  

Context Propagation 
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type Service func(req Request) Response



router.GET("/", List) 
router.POST("/", Register) 
router.DELETE("/:id", Deregister)



Making our 
service reliable 
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Event Driven 
Architecture
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Context 
Propagation 
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package context 

type Context interface { 
    Deadline() (deadline time.Time, ok bool) 
    Done() <-chan struct{} 
    Err() error 
    Value(key interface{}) interface{} 
}
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Perfect for 
microservice 
architectures



Concurrency: 
Goroutines 
Channels



Small 
Simple 
Easy



Thanks!
@mattheath 
@monzo


