
Building a Bank
with Go
Matt Heath, Monzo

Hi, I’m Matt
@mattheath

monoliths
traditional dev

A UK banking licence is authorised by the PRA and
regulated by the PRA and FCA1, allowing deposit-
taking and balance sheet lending. Once granted,
it allows firms to passport across Europe, accessing
500 million consumers.

Changes in the authorisation regime in March
20132 introduced a new two-stage process, under
which a firm is first granted a banking licence with
restrictions.

This is followed by a “mobilisation” phase during
which final capital is raised and IT systems are
completed, before launching to the public.

Monzo was granted a licence with restrictions
in August 2016 and is planning to launch current
accounts in the first half of 2017.

We received a UK banking licence in August 2016!

1 Prudential Regulation Authority, Financial Conduct Authority

2 http://www.bankofengland.co.uk/publications/Documents/joint/barriers.pdf

FEB
2015

JAN
2016

JAN
2017

MAR FEB FEBAPR MAR MAR APR MAY JUN JULMAY APRJUN MAYJUL JUNAUG JULSEP AUGNOV SEPDEC NOV DEC

PRE APPLICATION APPLICATION MOBILISATION LAUNCH

LICENCE WITH
RESTRICTIONS

50K MAX
DEPOSIT WE ARE

HERE

12

?

Application

Application

Database

Application

Database

Application

Databases

Application

DatabasesSearch

Application

DatabasesSearch
Caching

Application

DatabasesSearch
Caching

CAT GIFS

ALL
HAIL
THE
MONOLITH

Application

DatabasesSearch
Caching

CAT GIFS

APPLICATIONApplication

Single Responsibility
Principle

Bounded Context

Well defined
Interfaces

Why Go?
Memory Managed
Statically Typed
Excellent Concurrency
Perfect for simple, small, network services

Lightweight
Concurrency

Goroutines

// Blocking function call

handleRequest()

// Function runs concurrently

go handleRequest()

package main

func main() {

 go handleRequest()

 // …

}

package main

func main() {

 go handleRequest()

 // …

}

main

package main

func main() {

 go handleRequest()

 // …

}

handleRequest

main

"Do not communicate by
sharing memory; instead, share

memory by communicating."
 - Effective Go

Channels

Simplicity

Static Linking
Stdlib
etc

0

40

80

160

120

Feb
2015

Mar
2017

200

Number of services

monzo/typhon

Service

Service

Service

Service

Transport

Service

Service

Transport

ServiceService

Service

Service

Transport

ServiceService

Client library

Server library

Service

Service ServiceService

HTTP

HTTP

Service Discovery
Load Balancing

Timeouts and Expirations
Retries

Rate Limiting
Connection Pooling

Circuit Breaking
Failure Detection

Metrics and Tracing
Interrupts

Context Propagation

Service

Service ServiceService

HTTP

HTTP

?

Service

Service ServiceService

HTTP

HTTP

linkerd

Service Discovery
Load Balancing

Timeouts and Expirations
Retries

Rate Limiting
Connection Pooling

Circuit Breaking
Failure Detection

Metrics and Tracing
Interrupts

Context Propagation

Load Balancer

Load Balancer

HTTP API & Routing Layer

Load Balancer

HTTP API & Routing Layer

API 
Service

/webhooks —-> Webhook API

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Auth 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Auth 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Database

Database

Auth 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Database

External
Provider

Database

Auth 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Database

type Service func(req Request) Response

router.GET("/", List)
router.POST("/", Register)
router.DELETE("/:id", Deregister)

Making our
service reliable

+ = ❤

Webhook 
Service

Webhook 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Webhook 
Service

Webhook 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Webhook 
Service

Webhook 
Service

Webhook 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Webhook 
Service

Webhook 
Service

Webhook 
Service

Webhook 
Service

Load Balancer

HTTP API & Routing Layer

Webhook 
API

Slow or 
Errors

Event Driven
Architecture

Service
A

Service
B

Load Balancer

HTTP API & Routing Layer

API
Service

API
Service

Service
A

Service
B

Load Balancer

HTTP API & Routing Layer

API
Service

Service
A

Service
B

Load Balancer

HTTP API & Routing Layer

API
Service

Service
A

Service
B

Load Balancer

HTTP API & Routing Layer

Service
C

Service
D

Service
E

Context
Propagation

api

api

api.customer

api.customer

service.customer

service.customer

api

api

api.customer

api.customer

service.customer

service.customer

8096820c-3b7b-47ec-bce6-1c239252ab40

api

api

api.customer

api.customer

service.customer

service.customer

api

api

api.customer

api.customer

service.customer

service.customer

package context

type Context interface {
 Deadline() (deadline time.Time, ok bool)
 Done() <-chan struct{}
 Err() error
 Value(key interface{}) interface{}
}

package context

type Context interface {
 Deadline() (deadline time.Time, ok bool)
 Done() <-chan struct{}
 Err() error
 Value(key interface{}) interface{}
}

package context

type Context interface {
 Deadline() (deadline time.Time, ok bool)
 Done() <-chan struct{}
 Err() error
 Value(key interface{}) interface{}
}

api

api

api.customer

api.customer

service.customer

service.customer

api

api

api.customer

api.customer

service.customer

service.customer

SEND

RECV

SEND

RECV

RECV

SEND

RECV
SEND

api api.customer service.customer

SEND

RECV

SEND

RECV

RECV

SEND

RECV
SEND

phosphor

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

API card-api card-processing cards transactions balance transaction-enrichment merchant feed-generator feed apns

Perfect for 
microservice
architectures

Concurrency: 
Goroutines
Channels

Small
Simple
Easy

Thanks!
@mattheath
@monzo

