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Hardware Trends 
 Graph shows Intel CPUs over time 

– (graph courtesy Herb Sutter) 
 Moore’s Law still in full force 

– Transistor count doubles ~18mos 
– Now giving us more cores, not faster 

 CPU clock rates stopped going 
up in 2003 

– (some period of denial followed) 
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Dude, Where’s My Cores? 
 If Moore’s law is plowed into 

core count, we’d see red line 
 Reality is blue marks 

– For enterprise chips (-EX) 
– Lower for consumer chips 

 Chipmakers not delivering all the 
cores they can 

– Because software isn’t ready! 
 Except for data-parallel analytics 

– And GPUs 
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Concurrency, Through The Ages 
 Primary goal of using concurrency is maximizing use of CPU(s) 

– Though sometimes used to manage program structure (e.g., CSP, Actors) 
 Dominant maximization strategy changes over time 

– Single-core era 
 Alternative to blocking – nonblocking IO, prioritized background tasks 

– Multi-core era 
 Coarse-grained, task-based concurrency 
 Largely about throughput – pushing more requests through a server 

– Many-core era 
 Fine-grained data parallelism 
 Largely about latency – use more cores to get the answer faster 
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Hardware Trends Drive Software Trends 
 Languages, libraries, and frameworks shape the programs we write 

– We follow the path of least resistance… 
 Hardware shapes the languages, library, and frameworks we write 

– Java 1 supported threads, locks, condition queues 
– Java 5 added thread pools, blocking queues, concurrent collections  
– Java 7 added the fork-join library 
– Java 8 added parallel streams 
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Terminology 
 Sadly, definitions for concurrency and parallelism are not standard 

– Often (mistakenly) used interchangeably 
 Historically… 

– Concurrency is a property of a program’s structure 
 Organized as the interaction between multiple cooperating activities 

– Parallelism is a property of a program’s execution 
 Do things really happen simultaneously, or is this just an illusion? 

– Concurrency is the potential for parallelism 
– Useful distinction when true concurrent execution was mostly a theoretical 

concern 
– Less useful distinction today 
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Terminology 
 More commonly today… 

– Concurrency is about correctly and efficiently controlling access to shared resources 
 Example: constructing thread-safe data structures 
 Primitives: Locks, events, semaphores, coroutines, STM 

– Parallelism is about using additional resources to produce an answer faster 
 Example: searching a large data set by partitioning 

 Why should we care? 
– Concurrency is hard!   

 Reasoning about shared state and locks requires wizardry 
 Not easy even with secret wizard spell book! 

– Parallelism is much easier! 
 Standard trick is partitioning 
 And a little bit of discipline 
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Parallelism 
 Parallelism is about using more resources to get the answer faster 

– Strictly an optimization! 
– If additional resources are not available, can still compute sequentially 

 Corollary: Only useful if it really does get the answer faster! 
 Just because we use more resources … 

– Doesn’t mean the computation is always faster than a sequential one 
– Or even as fast… 

 Analyze → implement → measure → repeat... 
– Prefer sequential implementation until parallel is proven effective 

 Measure of parallel effectiveness is speedup 
– How much faster (or slower) compared to sequential?   
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Parallelism 
 A parallel computation always involves more work than the best sequential 

alternative 
– How could it not?  It still has to solve the problem! 
– And also:  

 Decompose the problem 
 Launch tasks, manage tasks, wait for tasks to complete 
 Combine results 

 Parallel version always starts out “behind”  
– We hope to make up for this initial deficit by burning more resources 
– To succeed, we need 

 A parallelizable problem 
 A good implementation 
 Good runtime support for execution 
 Enough data 
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Exploitable Parallelism 
 Not all problems parallelize equally! 
 Given a function f, define 

g(0) = f(0)              h(0) = f(0) 
g(n) = f( g(n-1) ), for n > 0       h(n) = f(n) + h(n-1), for n > 0 
 

 How well can we parallelize computing g and h? 
– Their definitions look very similar 
– Are they equally parallelizable? 
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Exploitable Parallelism 
g(0) = f(0)          
g(n) = f( g(n-1) ), for n > 0 
 

 Parallelizing g turns out to be a lost cause 
 Can rewrite as 

 g(n) = f( f( … n times … f( 0 ) … ) 
 Can’t compute f(f(0)) until we know f(0) 

– Problem is fundamentally sequential 
– Parallelism limited by dataflow dependency 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 13 

Exploitable Parallelism 
h(0) = f(0) 
h(n) = f(n) + h(n-1), for n > 0 
 

 Parallelizing h turns out to be easy!  
 Can rewrite as 

 h(n) = f(1) + f(2) + … f(n) 
 Can compute each term independently 

– Then add them up, which also admits parallelization 
– Problem is embarassingly parallel 
– Though beware of accidental dataflow dependency! 
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Exploiting Parallelism 
 Despite similar-looking definition, h was parallelizable but g was not 

– But, a naïve implementation of h would have a dataflow graph just like g! 
 Its not enough to have exploitable parallelism 

– You have to structure the computation to actually exploit it! 
– Many of the techniques we naturally use in sequential algorithms are 

impediments in parallel ones 
 Need to unlearn some bad habits 
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Towards Parallel Computation 
 Simple problem: add numbers from 1..n 
 What kind of dataflow graph do we get? 
 What kind of dataflow graph do we want? 
 Problem #1 – Accumulator pattern 

– Need to unlearn this! 
– Impediment to parallelism 

 

int sumSeq(int[] array) { 
    int sum = 0; 
    for (int i : array) 
        sum = sum + i; 
    return sum; 
} 
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int sumBroken(int[] array) { 
    int mid = array.length / 2; 
    int sum = 0; 
    CONCURRENT { 
        { 
            for (int i = 0; i < mid; i++) 
                sum = sum + array[i]; 
        } 
        { 
            for (int i = mid; i < array.length; i++) 
                sum = sum + array[i]; 
        } 
    } 
    return sum; 
} 

Towards Parallel Computation 
 Might try solving the problem with concurrency 
 But, the obvious approach is broken! 

– Data race on every access to sum 
– Will get the wrong answer 
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Towards Parallel Computation 
 We can fix this, of course… 

– But now it is much slower than sequential! 
– Cores are stalled waiting for lock, not doing work 

 Problem has exploitable parallelism 
– Failed attempt to exploit it 

int sumConcurrent(int[] array) { 
    int mid = array.length / 2; 
    int sum = 0; 
    CONCURRENT { 
        { 
            for (int i = 0; i < mid; i++) 
                ATOMIC { sum = sum + array[i]; } 
        } 
        { 
            for (int i = mid; i < array.length; i++) 
                ATOMIC { sum = sum + array[i]; } 
        } 
    } 
    return sum; 
} 
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Shared State 
 There are three ways to safely handle state… 

– Don’t share 
– Don’t mutate 
– Coordinate access 

 The first two are far easier to get right than the third… 
– Let’s try “don’t share” 
– Partition the array in two chunks, and operate on them separately 
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int sumPartitioned(int[] array) { 
    int mid = array.length / 2; 
    int leftSum = 0, rightSum = 0; 
    CONCURRENT { 
        { 
            for (int i = 0; i < mid; i++) 
                leftSum = leftSum + array[i]; 
        } 
        { 
            for (int i = mid; i < array.length; i++) 
                rightSum = rightSum + array[i]; 
        } 
    } 
    return leftSum + rightSum; 
} 

Towards Parallel Computation 
 First cut at a parallel solution 
 Decompose the problem into subproblems 
 Solve the subproblems 
 Combine the result 
 How will this perform? 

– Given enough data …. 
 OK on 1 or 2 cores 
 No further speedup for N > 2 cores 

 No shared access to mutable state 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 20 

Divide And Conquer 
 Standard tool for parallel execution is divide-and-conquer 

– Recursively decompose problem until it is small enough for sequential 

R solve(Problem<R> problem) { 
    if (problem.isSmall()) 
        return problem.solveSequentially(); 
    R leftResult, rightResult; 
    CONCURRENT { 
        leftResult = solve(problem.left()); 
        rightResult = solve(problem.right()); 
    } 
    return problem.combine(leftResult, rightResult); 
} 
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Divide And Conquer 
 Recursive decomposition is simple 

– Especially with recursively-defined data structures, like trees 
– No shared mutable state – just partitioned reading 
– Intermediate results live on the stack 

 Starts forking work early!   
– Beware Amdahl’s Law 

 Decomposition is dynamic 
– Can incorporate runtime knowledge of core count and load 
– Portable expression of parallel computation  
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Summing an array in parallel 

(((1 + 2)  +  (2 + 3)) + ((5 + 6)  + (7 + 8))) 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

3 4 5 6 8 7 1 2 
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Summing an array in parallel 

5 6 3 4 8 7 1 2 7 3 11 15 

10 

36 

26 

36 
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Performance Considerations 
 Splitting / decomposition costs 

– Sometimes splitting is more expensive than just doing the work! 
 Task dispatch / management costs 

– Can do a lot of work in the time it takes to hand work to another thread 
 Result combination costs 

– Sometimes combination involves copying lots of data 
 Locality 

– The elephant in the room 
 Each can steal away potential speedup! 

– In general, need a lot of data to make up for decomposition startup 
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Fork-Join 
 Java SE 7 added the fork-join framework to java.util.concurrent 

– Task management framework for fine-grained, CPU-intensive tasks 
 Scales well from 1 thread to hundreds 

– Specialized and optimized for divide-and-conquer 
– Based on concept of work stealing 

 Minimizes contention costs 
 Two basic operations 

– Fork a task 
– Wait for (or get callback on) task completion 

 Efficient substrate for our CONCURRENT { t1, t2 } construct 
– Relatively low task-management overhead 
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Streams 
 Streams is about possibly-parallel, aggregate operations on datasets 
 Sources can be collections, arrays, generator functions, IO… 

– Support (including parallel) deeply woven into Collections 
 Encourages a declarative style – what, not how 

– If done well, more readable and less error-prone 
 Pipelines built from basic primitives – filter, map, reduce, sort 

– Exploits laziness – all operations fused into a single pass on the data 
 All operations can be executed in parallel 

– But not magic parallelism dust!   
 Couldn’t get to a library like this without lambdas 
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Streams 
Set<Seller> sellers = new HashSet<>(); 
for (Txn t : txns) { 
    if (t.getBuyer().getAge() >= 65) 
        sellers.add(t.getSeller()); 
} 
List<Seller> sorted = new ArrayList<>(sellers); 
Collections.sort(sorted, new Comparator<Seller>() { 
    public int compare(Seller a, Seller b) { 
        return a.getName().compareTo(b.getName()); 
    } 
}); 
for (Seller s : sorted) 
    System.out.println(s.getName()); 

txns.stream() 
    .filter(t -> t.getBuyer().getAge() >= 65) 
    .map(Txn::getSeller) 
    .distinct() 
    .sorted(comparing(Seller::getName)) 
    .forEach(s -> System.out.println(s.getName())); 
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Parallel Stream Performance 
 Splitting / decomposition costs 

– How easily splittable is the source?   
 Task dispatch / management costs 

– Handled by FJ framework 
 Result combination costs 

– Adding numbers is cheap; merging sets is expensive 
 Locality 

– Array-based sources are best 
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The NQ Model 
 Simple model for parallel performance 

– N = number of data items 
– Q = amount of work per item 

 Rule of thumb 
– Need NQ > 10,000 to have a chance for parallel speedup 
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Source Splitting 
 Some sources split better than others 

– Cost of computing split 
– Evenness of split 
– Predictability of split 

 Arrays split cheaply, evenly, and with perfect knowledge of split sizes 
– Linked lists have none of these properties 
– Iterative generators behave like linked lists, stateless generators behave 

like arrays 
 Compare 

– IntStream.iterate(0, i -> i+1).limit(n).sum()    

– vs IntStream.range(0, n).sum()  
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Locality 
 Locality is the elephant in the room 
 Parallelism wins when we can keep the CPUs busy doing useful work 

– Waiting for cache misses is not useful work 
 Memory bandwidth often the limiting factor on many systems 
 Array-based, numeric problems parallelize best 
 Benchmark: Stream.of(int[]).sum() vs Stream.of(Integer[]).sum() 

– 8-core i7, Java SE 8, Linux 

Speedup over 
Sequential 

N=1k N=10k N=1M 

int 1x 6.2x 7.9x 
Integer (4.9x) 1.5x 3.5x 
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Locality 

array 

Integer 

9 Integer 

27 Integer 

81 

Integer 

3 

Integer[] ints   

array 

3 

9 

27 

81 

int[] ints   
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Encounter Order 
 Some operations have semantics tied to encounter order 

– Encounter order is the order implied by the source 
– Some sources have no defined encounter order (e.g., HashSet) 
– Operations like limit(), skip(), and findFirst() are tied to encounter order 
– Less exploitable parallelism 

 Sometimes the encounter order is meaningful, sometimes not 
– Call .unordered() to indicate encounter order is not meaningful to you 
– Ops like limit(), skip(), and findFirst() will optimize in the presence of 

unordered sources 
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Merging 
 For some operations (sum, max) the merge operation is really cheap 
 For others (groupingBy to a HashMap) it is insanely expensive! 

– Involves a lot of copying 
– And repeatedly, up the tree 
– Cost of merging overwhelms the parallelism advantage 

 Measuring IntStream.range(0, n).collect(toSet())… 
– For n=10K, approximately 4x slowdown going parallel 
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Merging a set in parallel 

5 6 3 4 8 7 1 2 { 3, 4 } { 1, 2 } { 5, 6 } { 7, 8 } 

{ 1, 2, 3, 4 } 

{ 1, 2, 3, 4, 5, 6, 7, 8 } 

{ 5, 6, 7, 8 } 
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Parallel Streams 
 Any of the following factors can conspire to undermine speedup 

– NQ is insufficiently high 
– Cache-miss ratio is too high (too many indirections) 
– Source is expensive to split 
– Result combination cost is too high 
– Pipeline uses encounter-order-sensitive operations 
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Summary 
 Streams are cool! 
 Parallelism is cool! 
 But… parallelism is an optimization 

– And parallel streams are not magic performance dust 
 Before optimizing, always … 

– Have actual performance requirements 
– Have reliable performance measurements (not easy!) 
– Ensure that your performance doesn’t meet requirements 
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