
Coding for High
Frequency Trading and
other Financial
Services applications

Richard Croucher

March 2017

About me
Richard is currently Vice President of High Frequency Engineering for Barclays

As well as Barclays, Richard has consulted on IT to HSBC, RBS, DeutscheBank,
CreditSuisse, Flowtraders, JP. Morgan, Merril Lynch and Bank of America.

Richard was also Chief Architect at Sun Microsystems where he worked on
HPC Grid and helped create their Cloud capability. He was also a Principle
Architect in Microsoft Live which evolved in Azure.

Functionally he has help positions as a Physicist, Electronic Design Engineer,
Programmer, IT Product Manager, IT Marketing Manager, IT Consultant and IT
Architect

Describes himself as a Platform Architect, specialising in HFT, DevOps, Linux
and large scale Cloud solutions

Fellow of STAC Research, Fellow British Computer Society, Chartered IT Practicioner. Awarded
degrees from Brunel University, University of East London and University of Berkshire

Intro

Investment Banking IT

High Frequency Trading

Common Technologies

Coding Styles

Investment Banking IT

Front Office
• Traders sit on Trading rooms,

each with several screens and
a fast dialler.

• Complimented now by
cololocated algo trading
computers

Middle Office
• Accountants, Economists,

Mathematicians create
strategies, watch exposure
and risk on client portfolios.

• Trades are matched, cleared
and settled

Back Office
• The day’s cash movements

are aggregated and
payment instructions sent
out

• The Banks overnight
positions are re-calculated
and updated

Trade Flow

Trading - It’s all buying and selling

The venue is the electronic
meeting place where buyers
and sellers get connected
The venue matches buyers to
sellers
The spread is the current
difference between buy and
sell offers

Liquidity increases as buyers
and sellers use your venue

Options are contracts to
buy/sell in the future at an
agreed price

Trading book

SellersBuyers

Spread

D
ep

th

3.
99

4.
00

4.
01

3.
95

3.
96

3.
98

3.
97

3.
94

3.
93

3.
92

3.
91

3.
90

3.
89

3.
88

4.
03

4.
02

4.
04

4.
05

4.
07

4.
06

4.
10

4.
09

4.
08

• Orders can be filled when they match buyers to sellers at the same price
• Orders typically stay until cancelled or the market closes

Price

Full Book

Algorithmic Trading Strategies

Arbitration
 Exploiting difference in price for the same stock in different venues
Momentum
 Assumes that a current trend will continue
Alpha (pairs)
 Matches stocks and assumes the value of one should be the same

as another
 Based on fundamental macroeconomic statistics
Composites
 Arb a ETF by beating it’s update, e.g. A 10% change in BP value

on the FTSE100 may translate into a 0.2% change in the overall
index

Market Making
 Accepting an Exchange fee to provide liquidity
 Typically large spread just outside current price
 Object is to make pennies on volume and minimize holding

Buying strategies

Smart Order Routing
 Discover which venue is offering the best price
 A regulatory requirement in EU and USA
Iceberg
 Slice a large order up into lots of small orders to disguise intent and reduce

market impact
 Led to a big increase in order volumes and decrease in typical order size
Sweep Order
 Buy only a percentage of desired quantity and pause for more liquidity to

be placed, hopefully at the same price
Crossfire
 Liquidity capturing algorithm that targets liquidity within dark pools

Common Technologies Deployed
Time Series Database – tick data - mostly kdb
In memory Database
Real time analytics - Hadoop, Shark
Excel analytics and Grid compute plugins
Complex maths libraries
Packet Decoders for each venue and trading protocol
FIX Engines
Smart Order Routers
RDMA (Remote Direct Memory Access)
FPGA (Fuse Programmable Gate Array)
DevOps - Chef, Puppet

Sell Side System - Venue

Market
Data

Market
Data

Order
Routing
Order

Routing

Matching
Engine

Matching
Engine

SurveillanceSurveillance

Matching
Engine

Matching
EngineFix EngineFix Engine

SettlementSettlement

Buy Side System

Market Data
Distribution
Market Data
Distribution

Smart Order
Router

Smart Order
Router

Last Value
Cache

Last Value
Cache

Order
Management

Order
Management

Trading
Engine
Trading
Engine

Risk and
Compliance

Risk and
Compliance

Trade Floor
Support

Trade Floor
Support

Trading
Engine
Trading
Engine

Trading
Engine
Trading
Engine

Pub/Sub Market Data bus

Store +
Forward
Reliable
Message Bus

Traders AnalyticsAnalytics

Pricing
Engine
Pricing
Engine

Trade Floor
Support

Trade Floor
Support

Web Trading
Support

Web Trading
Support Direct Feed

Trading
Engine

Direct Feed
Trading
Engine

Rates
Distribution

Rates
Distribution

Trade
Booking
Trade

Booking

Fix EngineFix Engine
Fix EngineFix Engine

Fix EngineFix Engine
Fix EngineFix Engine

Fix EngineFix Engine
Fix EngineFix Engine

QUANT programming

Now generally used to refer to the development of
algorithmic trading systems
Heavy maths bias – Ph.D expected
Expect familiarity and understanding of Black-Scholes model
used for derivatives

e.g. The value of a call option for a non-dividend paying
underlying stock is

HFT – programming skills
C++ and Java dominate, with a small number of FPGA specialists

Packet processing – TCP, UDP, Multicast

Destructor threads – spin waiting for packets to arrive to avoid interrupt
wakeup delay

Actor model – minimise lock contention

Nanosecond timestamping

Direct buffer management

Warm up - allocate and preload everything before trading starts

Pinning memory, cache line alignment

CPU isolation and affinity

Achieving durability via replication across network rather than disk write
(often to ‘luke warm’ backup server)

Memory mapping files when writing to disk cannot be avoided

C++ expertise area’s
 Boost – particularly Math
 C and even assembler inline
 QuantLib - Greeks library
 Lockfree++, actor patterns
 Performance optimization with pragma’s
 Intel TBB (Thread Building Blocks)
 Code and data locality to reduce cache misses
 Compiler optimization
 Network processing – TCP, UDP, Multicast
 TCP bypass - RDMA - libibverb
 Memory optimization and tuning – cache alignment, huge

pages
 Tuning – Intel Vtune

http://www.boost.org/
http://quantcorner.wordpress.com/2011/02/06/quantlib-the-greeks-and-other-useful-option-related-values/
http://tradexoft.wordpress.com/tag/lockfree/
http://tradexoft.wordpress.com/tag/lockfree/

Java expertise area

Low latency tuning and jitter avoidance

Extensive use of NIO, particularly with buffers

Lock detection, avoidance and tuning

Network processing - TCP, UDP, Multicast

Packet processing - raw, pcaps

RDMA – IBM JSOR, NIO wrappings for libibverb
GC tuning and avoidance - explicit buffer management and re-
use, tuning -

Numa aware on multi-socket servers -XX:+UseNuma
Reduce the cache misses -XX:+UseCompressedOops
Reduce the amount of TLB misses -XX:+UseLargePages
Increase object persistence - -XX:MaxTenuringThreshold=4

Linux

Virtually all trading carried out on Linux

 Goal is to achieve Low latency and low jitter
 Programmers are expected to know about the techniques used since there

are implications in the code
 Constant battle with power saving features added to each new

processor and Linux release - C and P states
 Isolating cores from scheduler and then explicit core selection for

critical threads - sched_setaffinity(2)
 Turbo boost, overclocking
 Kernel bypass preloads - Solarflare Onload, libvma, speedus
 TCP bypass - RDMA - RoCE, InfiniBand, OmniPath
 Linux bypass - Data Plane Development Kit (DPDK)
 Performance monitoring and profiling tools – sar, perf, iostats,

mpstat, memprof, strace, ltrace, blktrace, valgrind, latencytop,
systemtap ….

FPGA Programming

Mix of hardware and software skills
1. Hardware selection – device, board
2. Design and Code - VHDL Verilog
3. Simulation
4. Synthesis
5. Test bed instantiation
6. Pin assignment
7. FPGA bitstream generation and program load
8. Test

See Sven Anderssons “How to design an FPGA from scratch” published in EE Times, good
place to start although dated

http://www.eetimes.com/design/programmable-logic/4015129/How-to-design-an-FPGA-from-scratch

Multicore

Servers supporting 1000 hardware threads are already available.
Trend will increase with Moore's law doubling this every 18 months

Scalability, particularly concurrency is too hard with
imperative programming languages

Functional Languages are a better match to create scalable
code to run on multiple cores

Functional languages implicitly better for event based, lambda
programming styles

Functional Languages - Erlang
Benefits of Erlang
 Erlang OTP provides comprehensive runtime support including - Debugger, Event

Managers, Watchdogs, FSM, in-memory DB, Distributed DB, HA, Unit test, Docs, Live
Update

 Big Int – no need to deal with overflows
 Built in support for HTML and SNMP
 Powerful bit level processing
 Code is more powerful – achieves more in fewer lines
 Automated restart using Supervisors – fail early strategy significantly reduces explicit

try/catch coding
 Vast ecosystem of Erlang code, particularly for messaging and comms

Challenges with Erlang
 Immutable variables take some getting used to
 Forces you to use recursion since no ‘while’, ‘for’ operations
 Native String handling inefficient - text intensive systems use bit strings
 Overhead of typed data reduces efficiency e.g. Int's
 Virtual Machine, GC, Interpretation overheads although HiPE provides optimized

support for Unix on x86.

Practical experience is that inherent concurrency more than compensates for
VM overhead for most real work.
Exceptions are intensive numeric calculation and ultra low latency trading

Erlang distributed computing – ping/pong
ping(0, Pong_PID) ->

Pong_PID ! finished,
io:format(“ping finished~n”, []);

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()}
receive

pong ->
io:format(“Ping received pong~n”, [])

end,
ping(N -1, Pong_PID).

pong() ->
receive

finished ->
io:format(“Pong finished~n”, []);

{ping, Ping_PID} ->
io:format (“Pong received ping~n”, []),
Ping_PID ! pong,
pong()

end.

start() ->
Pong_PID = spawn(ping_pong, pong, []),
spawn(Server2, ping_pong, ping, [3, Pong_PID]).

Erlang Foreign Language integration

OS cmds:
Function os:cmd executes the command and returns the result. Exposes
dependencies on runtime operating system.

Ports:
Emulates Erlang node, separate failure and scheduling domain, safest but
highest overhead. Built in support for ‘C’ (erl_interface lib) Java (jinterface).
Community available OTP.NET, Py-interface (Python), Perl, erlectricity (Ruby),
PHP, Haskell/Erlang-FFI, Erlang/Gambit (Scheme), Distel (Emacs Lisp), Rustler
(Rust)

Linked-in drivers:
Runs inside a Erlang node. Dynamically linked in at runtime. Logically behaves
like a port but with less overhead. Shares failure domain. A crash of one will
crash both. Need to use driver_alloc(), driver_free() for malloc.

NIFs:
Replaces Erlang function, shares failure domain and thread scheduling. Can
impact node scheduling if execution > 1-2mS, needs to explicitly pre-empt by
yielding. Setup enif_schedule_nif so that node restart the still to complete NIF

Erlang HFT example

Erlang
Node

‘C’
NIF

Orchestration
Control Plane
(mult-threaded)

Erlang
Node

Erlang
Node

Erlang Msg and Pub/Sub

OS:CMD
Linux
setup/config

High
performance
task
single-
threaded)

Advanced Networking
Trading Venues are at extremely high volumes and speeds e.g OPRA 30
million msg/sec - 40G Ethernet

Extensive use of Multicast to ensure all participants receive data at
same time

Linux treats UDP as disposable so constant battle with ‘drops’
Needs explicit support in network - disabled in AWS.

TCP/IP Single thread performance limited to around 15Gbps

User space TCP/IP increase this to about 20Gbps but still too slow

RDMA is required to achieve single threaded line speed for
interface > 10G

Read and write to remote memory at line speed and without
consuming CPU cycles on remote node

Most 25/40/100G NICs all support RDMA
Variants of latest Intel and AMD server CPU’s have RDMA on die

InfiniBand, Ethernet (RoCE) and OmniPath transports all unified by
libibverbs

Programming with RDMA VERBS
Four phases to a RDMA program
 Connection management and establishment

– rdma_cm allows TCP/IP address space to be used to establish ‘queue
pairs’ which are used as end points.

 Memory registration
– locks the memory region which will send or receive data into memory to

prevent page faults. HCA loads TLB’s to translate between virtual to
physical address

– exchange memory keys to permit remote access to this memory by the
key holder

 Data transfer
– queue a work request , e.g. Read from or write to a remote server

 Single block or scatter gather
– actual data transfer carried out by hardware at wire speed

 Up to 2GB in a single transfer, HW error detection and correction prevents
errors

 measured at 6Gbytes per second, < 2µS latency across network for 2KB
transfers

 Completion
– Receive or check for notification of completion

Questions?

Richard.croucher@Barclays.com

