Data Cleansing and Data Understanding

Best Practices and Lessons from the Field

Casey Stella @casey_stella 2017

- I'm a Principal Software Engineer at Hortonworks, a Hadoop vendor, writing open source software
- I work on Apache Metron (Incubating), constructing a platform to do advanced analytics and data science for cyber security at scale

- I'm a Principal Software Engineer at Hortonworks, a Hadoop vendor, writing open source software
- I work on Apache Metron (Incubating), constructing a platform to do advanced analytics and data science for cyber security at scale
- Prior to this, I was
 - Doing data science consulting on the Hadoop ecosystem for Hortonworks
 - Doing data mining on medical data at Explorys using the Hadoop ecosystem
 - Doing signal processing on seismic data at Ion Geophysical
 - A graduate student in the Math department at Texas A&M in algorithmic complexity theory

"80% of the work in any data project is in cleaning the data."

— D.J. Patel in *Data Jujitsu*

There are two ways to understand your data

- Syntactic Understanding
- Semantic Understanding

If you hope to get anything out of your data, you have to have a handle on both.

A true type is a label applied to data points x_i such that x_i are mutually comparable.

- Schemas type != true data type
- A specific column can have many different types

A true type is a label applied to data points x_i such that x_i are mutually comparable.

- Schemas type != true data type
- A specific column can have many different types

"735" has a true type of integer but could have a schema type of string or double

Data density is an indication of how data is clumped together.

Data density is an indication of how data is clumped together.

• For numerical data, distributions and statistical characteristics are informative.

Data density is an indication of how data is clumped together.

- For numerical data, distributions and statistical characteristics are informative.
- For non-numeric data, counts and distinct counts of a canonical representation are extremely useful.

Data density is an indication of how data is clumped together.

- For numerical data, distributions and statistical characteristics are informative.
- For non-numeric data, counts and distinct counts of a canonical representation are extremely useful.
- For ALL data, an indication of how "empty" the data is.

Data density is an indication of how data is clumped together.

- For numerical data, distributions and statistical characteristics are informative.
- For non-numeric data, counts and distinct counts of a canonical representation are extremely useful.
- For ALL data, an indication of how "empty" the data is.

Canonical representations are representations which give you an idea at a glance of the data format

Data density is an indication of how data is clumped together.

- For numerical data, distributions and statistical characteristics are informative.
- For non-numeric data, counts and distinct counts of a canonical representation are extremely useful.
- For ALL data, an indication of how "empty" the data is.

Canonical representations are representations which give you an idea at a glance of the data format

- Replacing digits with the character 'd'
- Stripping whitespace
- Normalizing punctuation

Data **density** is an indication of how data is clumped together.

- For numerical data, distributions and statistical characteristics are informative.
- For non-numeric data, counts and distinct counts of a canonical representation are extremely useful.
- For ALL data, an indication of how "empty" the data is.

Canonical representations are representations which give you an idea at a glance of the data format

- Replacing digits with the character 'd'
- Stripping whitespace
- Normalizing punctuation

Data density is an assumption underlying any conclusions drawn from your data.

This kind of analysis can show

• Problems in the data pipeline

This kind of analysis can show

- Problems in the data pipeline
- Whether the assumptions of your analysis are violated

This kind of analysis can show

- Problems in the data pipeline
- Whether the assumptions of your analysis are violated

 $\frac{\Delta Density}{\Delta t} \implies$

• Automation

This kind of analysis can show

- Problems in the data pipeline
- Whether the assumptions of your analysis are violated

 $\frac{\Delta Density}{\Delta t} \implies$

- Automation
- Outlier Alerting

• Think of it as a rules engine that takes medical data and outputs how well doctors and departments are doing

- Think of it as a rules engine that takes medical data and outputs how well doctors and departments are doing
- Insights aren't trusted if they're wrong.

- Think of it as a rules engine that takes medical data and outputs how well doctors and departments are doing
- Insights aren't trusted if they're wrong.
- Correctness depend on good data

• Finding equivalences based on semantic understanding are often context sensitive.

- Finding equivalences based on semantic understanding are often context sensitive.
- May come from humans (e.g. domain experience and ontologies)

- Finding equivalences based on semantic understanding are often context sensitive.
- May come from humans (e.g. domain experience and ontologies)
- May come from machine learning (e.g. analyzing usage patterns to find synonyms)

- Finding equivalences based on semantic understanding are often context sensitive.
- May come from humans (e.g. domain experience and ontologies)
- May come from machine learning (e.g. analyzing usage patterns to find synonyms)

Semantic understanding **may** require data science. At the same time, data science **will** require semantic understanding.

• Doctors and Nurses are busy people

- Doctors and Nurses are busy people
- Humans suffer from confirmation bias

- Doctors and Nurses are busy people
- Humans suffer from confirmation bias
- Machines can only interpret what they can see

- Doctors and Nurses are busy people
- Humans suffer from confirmation bias
- Machines can only interpret what they can see
- Together we can fill in the gaps

SummarizerCLI

```
usage: SummarizerCLI

-D <property=value> Inp

-h,--help Thi

-i,--input <SOURCE> Inp

-l,--load <JSON> Loa

sum
```

-m,--mode <MODE>

```
-nns,--non_numeric_sample_size <NUM>
```

```
-ns,--numeric_sample_size <NUM>
```

```
-o,--output <SOURCE>
-pct,--percentiles <PCTILE1[,PCTILE2]*>
```

-smo,--similarity_min_occurrance <NUM_OCCURANCES>

-ssc,--similarity_score_cutoff <SCORE_CUTOFF>

Input properties This screen Input source Load an existing summary Type of mode. One of SOL,CSV Sample size for non-numeric data. Sample size for numeric data. A comma separated list of percentiles in (0. 1007. Min Occurrances to be considered for Similarity score cutoff. Scores are range from [0,1].

Column Statistical Details

HL7Text (0% Missing)

ObservationYear (0% Missing) LabObservationGuid (0% Missing) UserGuid (0% Missing) HL7Identifier (0% Missing) ReferenceRanae (5% Missina) Units (21% Missing) IsAbnormalValue (0% Missing) ObservationValue (0% Missina) LabPanelGuid (0% Missina) HL7CodingSystem (0% Missing) ResultStatus (0% Missing) AbnormalFlags (92% Missing)

Summary for HL7Text				
Count Statistics		<u>Count</u> <u>D</u> 29014 3	<u>istinct Count</u> 48	
Canonical Representation Count VALID STRING	<u>Canonical Value</u> bilirubin protein hemoglobin potassium chloride	Count 1679 ▲ 1657 ■ 1585 ※ 1474 ※ 1472 ▼	,	
Possible Value Synonymns	word Albumin, Serum Iron Saturation Calcium, Serum T4,Free(Direct) eGFR		<u>synonym</u> Bilirubin, Total Prostate Specifi Protein, Total, eGFR AfricanAmer eGFR AfricanAmer	ic Ag∎ Seru≋ rican 🕷

Summary fo	r Units
------------	---------

Count Statistics	Type Modifier STRING MISSING STRING VALID	
Canonical Representation Count MISSING STRING	<u>Canonical Value</u>	2 <u>Count</u> 6122
Canonical Representation Count VALID STRING	Canonical Value g/dl x{d}{d}e{d}/ul mg/dl mmol/l %	4541 🔺
Possible Value Synonymns	<u>word</u> % fL Ratio M∕uL	synonym g/dL ▲ pg ■ g/dL ※ mL/min/1.73m2% mil/cmm ▼

• Your data science teams have to be integrally involved in the data transformation and understanding.

- Your data science teams have to be integrally involved in the data transformation and understanding.
- Your data science teams have to be willing to get their hands dirty

- Your data science teams have to be integrally involved in the data transformation and understanding.
- Your data science teams have to be willing to get their hands dirty
- Your data science teams have to be allowed to get their hands dirty

- Your data science teams have to be integrally involved in the data transformation and understanding.
- Your data science teams have to be willing to get their hands dirty
- Your data science teams have to be **allowed** to get their hands dirty
- Your data science teams need software engineering chops.

Questions

Thanks for your attention! Questions?

- Code & scripts for this talk available on my github presentation page. $^{\rm 1}$
- Find me at http://caseystella.com
- Twitter handle: @casey_stella
- Email address: cstella@hortonworks.com

¹http://github.com/cestella/presentations/