
FROM

MICROLITHS
TO

MICROSYSTEMS
JONAS BONÉR

@JBONER

LIGHTBEND



WE HAVE BEEN SPOILED BY

THE ALMIGHTY
MONOLITH



KNOCK, KNOCK. WHO’S THERE?

REALITY



WE CAN'T MAKE THE HORSE FASTER



WE NEED CARS FOR WHERE WE ARE GOING



BUT DON'T JUST DRINK THE

THINK FOR YOURSELF



NO ONE WANTS
MICROSERVICES
IT'S A NECCESSARY EVIL



ARCHITECTURAL CONTEXT OF MICROSERVICES:

DISTRIBUTED SYSTEMS



LET'S SAY THAT WE WANT TO
SLICE THIS MONOLITH UP



TOO MANY END UP WITH AN ARCHITECTURE LIKE 
THIS



MICROLITH:
SINGLE INSTANCE
MICROSERVICE

-NOT RESILIENT
-NOT ELASTIC



One actor is no 
actor.

Actors come in 
systems.
— Carl Hewitt



MICROSERVICES
COME IN SYSTEMS



AS SOON AS WE

EXIT THE SERVICE
WE ENTER A WILD OCEAN OF

NON-DETERMINISM
THE WORLD OF

DISTRIBUTED SYSTEMS



SYSTEMS NEED TO
EXPLOIT REALITY



EMBRACE REALITY
AND ITS CONSTRAINTS
SHALL SET YOU FREE



INFORMATION HAS

LATENCY



The contents of
a message are

always from the 
past!

They are never 
“now.”

— Pat Helland



WE ARE ALWAYS LOOKING INTO THE PAST



THE COST OF MAINTAINING THE

ILLUSION
OF AN ABSOLUTE

NOW



AS LATENCY GETS HIGHER, THE
ILLUSION CRACKS EVEN MORE



In a distributed 
system, you can know 

where
the work is done
or you can know 

when
the work is done

but you can’t know 
both

— Pat Helland



STRIVE TO MINIMIZE

COUPLING &
COMMUNICATION



Words are very 
unecessary.

They can only do 
harm.

Enjoy the silence.
— Enjoy the Silence by Martin 

Gore (Depeche Mode)



Silence is not only 
golden, it is 

seldom misquoted.
— Bob Monkhouse



WE HAVE TO RELY ON
EVENTUAL CONSISTENCY

BUT RELAX
IT'S HOW THE WORLD WORKS



NO ONE WANTS
EVENTUAL CONSISTENCY.
IT'S A NECESSARY EVIL.
IT'S NOT COOL. IT'S USEFUL.



TWO HELPFUL TOOLS
1. REACTIVE DESIGN
2. EVENTS-FIRST DDD



REACTIVE PROGRAMMING
VS

REACTIVE SYSTEMS



REACTIVE PROGRAMMING CAN HELP US MAKING
THE INDIVIDUAL SERVICE INSTANCE
HIGHLY PERFORMANT AND EFFICIENT



REACTIVE SYSTEMS CAN HELP US BUILDING
DISTRIBUTED SYSTEMS THAT ARE
ELASTIC AND RESILIENT



GO
ASYNCHRONOUS



ASYNC IO—IS ABOUT NOT 
BLOCKING THREADS

ASYNC COMM—IS ABOUT NOT 
BLOCKING REQUESTS



GO ASYNCHRONOUS 
& NON-BLOCKING
- MORE EFFICIENT USE OF 

RESOURCES
- MINIMIZES CONTENTION ON 

SHARED RESOURCES



ALWAYS APPLY BACK-PRESSURE

A FAST SYSTEM
SHOULD NOT OVERLOAD

A SLOW SYSTEM



LET'S APPLY REACTIVE PROGRAMMING TO OUR MICROLITHS



WE NEED TO EXTEND OUR 
MODELS OF

COMMUNICATION

1. ASYNCHRONOUS MESSAGING 
(N-M)

2. STREAMING (1-1)
3. SYNCHRONOUS REQUEST/

REPLY (1-1)





WE'RE GETTING THERE, BUT WE STILL HAVE A
SINGLE INSTANCE MICROSERVICE

—NOT SCALABLE
—NOT RESILIENT



MICROSERVICES
COME AS SYSTEMS



EACH MICROSERVICE
NEEDS BE DESIGNED AS
A DISTRIBUTED SYSTEM

A MICROSYSTEM



WE NEED TO MOVE

FROM MICROLITHS
TO MICROSYSTEMS



SEPARATE THE
STATELESS BEHAVIOR

FROM THE

STATEFUL ENTITY
TO SCALE THEM INDIVIDUALLY





SCALING (STATELESS) BEHAVIOR

IS EASY



SCALING (STATEFUL) ENTITIES

IS HARD



THERE IS NO SUCH THING AS A
"STATELESS" ARCHITECTURE
IT'S JUST SOMEONE ELSE'S PROBLEM



THE ENTITY CAN BECOME AN

ESCAPE ROUTE
FROM REALITY.
A SAFE ISLAND OF
DETERMINISM AND
STRONG CONSISTENCY





REACTIVE SYSTEMS
HELPS MAKING THE
MICROSERVICE (MICROSYSTEM)

RESILIENT AND
ELASTICALLY SCALABLE
LEARN MORE AT REACTIVEMANIFESTO.ORG



REACTIVE SYSTEMS ARE BASED ON

ASYNCHRONOUS
MESSAGE-PASSING



ALLOWS DECOUPLING IN

SPACE
AND

TIME



ALLOWS FOR LOCATION TRANSPARENCY
ONE COMMUNICATION ABSTRACTION ACROSS ALL DIMENSIONS OF SCALE

CORE ⇒ SOCKET ⇒ CPU ⇒ 
CONTAINER ⇒ SERVER ⇒ 
RACK ⇒ DATA CENTER ⇒ 

SYSTEM



But I'll take my 
time anywhere.

I'm free to speak 
my mind anywhere.
And I'll redefine 

anywhere.
Anywhere I roam.

Where I lay my 
head is home.

— Wherever I May Roam by Lars 
Ulrich, James Hetfield 

(Metallica)



THE PATH TOWARDS RESILIENCE

1. Decentralized Architecture
2. Bulkheading
3. Replication

4. Failure Detection
5. Supervision

⇒ Self-healing systems



THE PATH TOWARDS ELASTICITY

1. Decentralized Architecture
2. Epidemic Gossip Protocols

3. Self-organization
4. Location Transparency
⇒ Elastic systems





THINK IN TERMS OF
CONSISTENCY BOUNDARIES



INSIDE DATA: OUR CURRENT PRESENT (STATE)
OUTSIDE DATA: BLAST FROM THE PAST (FACTS)
BETWEEN SERVICES: HOPE FOR THE FUTURE (COMMANDS)

— PAT HELLAND, DATA ON THE INSIDE VS DATA ON THE OUTSIDE



PRACTICE

EVENTS-FIRST
DOMAIN-DRIVEN DESIGN



DON'T FOCUS ON THE THINGS—THE NOUNS
FOCUS ON WHAT HAPPENS—THE EVENTS



LET THE

EVENTS DEFINE
THE BOUNDED CONTEXT



EVENTS REPRESENT FACTS



To condense fact 
from the vapor of 

nuance
— Neal Stephenson, Snow Crash



...AND WE ARE NOT TALKING ABOUT

ALTERNATIVE FACTS



WHAT ARE THE

FACTS?



UNDERSTAND HOW FACTS ARE CAUSALLY RELATED

HOW FACTS FLOW IN THE SYSTEM



WE NEED TO

CONTAIN MUTABLE STATE &

PUBLISH FACTS



The truth is the 
log.

The database is a 
cache of a subset 

of the log.
— Pat Helland



CRUD
IS DEAD



FAVOR

EVENT LOGGING



THE LOG
IS A DATABASE OF THE PAST
NOT JUST A DATABASE OF THE PRESENT



EVENT LOGGING AVOIDS THE INFAMOUS

OBJECT-RELATIONAL
IMPEDENCE MISMATCH



UNTANGLE THE

READ & WRITE
MODELS WITH

CQRS & EVENT SOURCING





BUT WHAT ABOUT

TRANSACTIONS?



In general,
application 
developers

simply do not 
implement

large scalable 
applications

assuming 
distributed 

transactions.
— Pat Helland



USE A PROTOCOL OF

GUESS.
APOLOGIZE.
COMPENSATE.



IT'S HOW 
THE WORLD 

WORKS



IN SUMMARY

1. Don't build Microliths
2. Microservices come in (distributed) systems

3. Microservices come as (micro)systems
4. Embrace the Reactive principles

5. Embrace Event-first DDD & Persistence
6. Profit!



TRY THE

LAGOM
MICROSERVICES
FRAMEWORK
POWERED BY AKKA & PLAY

LAGOMFRAMEWORK.COM



LEARN
MORE
DOWNLOAD MY BOOK FOR FREE AT:
BIT.LY/REACTIVE-MICROSERVICES-ARCHITECTURE



THANK

YOU




