FROM

MICROLITHS
MICROSYSTEMS

OOOOOOOOOO

JJJJJJ
LLLLLLLLL

WE HAVE BEEN SPOILED BY

THE ALMIGHTY

1
LB

BEE

/J

AR

hﬁa/ﬂmm.mn”’ N
Wl Jo
W

- /:) P

i3 ‘ f
JRWHERE WE ARE
"' . a i i | "{

-~

R M

- ‘;’

BUT DON'T JUST DRINK THE

THINK FOR YOURSELF

NO ONE WANIS
MICROSERVICES

IS A NECCESSARY EVIL

ARCHITECTURAL CONTEXT OF MICROSERVICES:

DISTRIBUTED SYSTEMS

Monolith

LET'S SAY THAT WE WANT TO
SLICE THIS MONOLITH UP

70O MANY END UP WITTlliﬂéN ARCHITECTURE LIKE

..

Microlith Microlith Microlith Microlith

Single Instance Single Instance Single Instance Single Instance

REST/Servlet REST/Servlet

Service : : Service

REST/Servlet REST/Servlet

Service Service

JPA JPA JPA JPA

MICROLITH:

SINGLE INSTANCE

MICROSERVICE
-NOT RESILIENT
-NOT ELASTIC

ONE ACTOR IS NO
ACTOR.
ACTORS COME IN
SYSTEMS.

- CARL HEWITT

MICROSERVICES
COME IN SYSTEMS

AS SOON AS WE

EXIT THE SERVICE

WE ENTER A WILD OCEAN OF

NON-DETERMINISM

THE WORLD OF
DISTRIBUTED SYSTEMS

SYSTEMS NEED TO
EXPLOIT REALITY

EMBRACE REALITY
AND ITS CONSTRAINTS
SHALL SET YOU FREE

AN
., ws“.. > wzkwu,‘\

INFORMATION HAS

' LATENCY

'''''''''''''''
.......

THE CONTENTS OF
A MESSAGE ARE
ALWAYS FROM THE
PAST!

THEY ARE NEVER
NOW.’

- PAT HELLAND

WE ARE ALWAYS LOOKING INTO THE PAST

THE COST OF MAINTAINING THE
Gunther's Law vs. Amdahl's Law
12 ! — : , :
I L L U S I 0 N -+««« Amdahl's Law Gunther's UniversalScaIabilityModel
E o

OF AN ABSOLUTE

NOW

N A DISTRIBUTED
SYSIEM, YOU CAN KNOW
WHERE

THE WORK' 1S DONE
UR YOU CAN KNOW

WHEN

A WORK 1S DONE
Ul YOU CAN'T KNOW

BOTH

- PAT HELLAND

__§
ml | IH‘N \\ 7

STRIVE TO MINIMIZE

COUPLING &
COMMUNICATION

WORDS ARE VERY
UNECESSARY.
THEY CAN ONLY DO
HARM.
ENJOY THE SILENCE.

- ENJOY THE SILENCE BY MARTIN
GORE (DEPECHE MODE)

Toh

X ..\V_ t
Nouy | ! U e
¥ ek

SILENCE IS NOT ONLY

GOLDEN. IT IS
SELDOM MISQUOTED.

- BOB MONKHOUSE

2 A
A"h'f
& TN

WE HAVE TO RELY ON

EVENTUAL CONSISTENCY
BUT RELAX

IT"S HOW THE WORLD WORKS

NO ONE WANIS

EVENTUAL CONSISTENCY.

[1"S A NECESSARY EVIL.
IT"S NOT COOL. IT'S USEFUL.

TWO HELPFUL TOOLS

1. REACTIVE DESIGN
2. EVENTS-FIRST DDD

REACTIVE PROGRANMING
REACTIVE SYSTEMS

REACTIVE PROGRAMMING CAN HELP US MAKING

THE INDIVIDUAL SERVICE INSTANCE
HIGHLY PERFORMANT AND EFFICIENT

REACTIVE SYSTEMS CAN HELP US BUILDING
DISTRIBUTED SYSTEMS THAT ARE

ELASTIC AND RESILIENT

_\/ Viktor Klang X
viktorklang

"To get consistent & fast response in a real time
system, you've to work asynchronously [...]
never wait on something happening.” @hintjens

S ¢ ERRABLAREG

12:44 PM - 21 Sep 2016

ASYNCHRONQUS

ASYNC 10-IS ABOUT NOT
BLOCKING THREADS

ASYNC COMM-IS ABOUT NOT
BLOCKING REQUESTS

G0 ASYNCHRONOUS

& NON-BLOCKING

- MORE EFFICIENT USE OF
RESOURCES

- MINIMIZES CONTENTION ON
SHARED RESOURCES

-
r v
.

f-x-’{':»f" o X vy
ALWAYS APPLY BACK-PRESSURE # S e,

A FAST SYSTEM et

SHOULD NOT OVERLOAD
A SLOW SYSTEM

LET'S APPLY REACTIVE PROGRAMMING TO OUR MICROLITHS

(& 2
)
= £
S '8 £ K&
) c) S
R © | . W
= 1% Y o
) = B
> - B -
2 - v n
T c 2 -
© % m
()}
o 7
-
-
)
= =
= m
S g £ B
(®) (= (] —
- — a r W
= 1% Y o
) = | = g
> - B
@ — g e S
- = > i
- &
m_m o
(a4
&
(&
Y
= £
S |8 £ &
8] c S —
o — a r W
= D Y o
) = | = g
= BN S e
= = o n
= c .W Ll
S]
v o
G @
\
>
)
= £
— m
S g £ B
(®) = (] —
- — a } N
= @ By O
T i S B
S |o & e
* — g e S
- = > i
] v
v o
oo x
g 4

WE NEED TO EXTEND OUR
MODELS OF

CCCCCCCCCCCCC

1. ASYNCHRONOUS MESSAGING
(N-M)

2. STREAMING (1-1)

3. SYNCHRONOQUS REQUEST/
REPLY (1-1)

Reactive Programming

Persistence

Reactive Microlith
Single Instance

Reactive Programming

Persistence

Reactive Microlith
Single Instance

Reactive Programming

Persistence

Reactive Microlith
Single Instance

WERE GETTING THERE. BUT WE STILL HAVE A
SINGLE INSTANCE MICROSERVICE

-NOT SCALABLE
-NOT RESILIENT

MICROSERVICES
COME AS SYSTEMS

EACH MICROSERVICE

NEEDS BE DESIGNED AS
A DISTRIBUTED SYSTEM

A MICROSYSTEM

WE NEED TO MOVE

FROM MICROLITHS
10 MICROSYSTEMS

SEPARATE THE

SIATELESS BEHAVIOR
FROM THE

SIATEFUL ENTITY

T0 SCALE THEM INDIVIDUALLY

Microsystem (almost) Microsystem (almost)

Node Node

Reactive Programming

REST Streaming

Stateless Behavior

Reactive Programming

REST Streaming

Stateless Behavior

Node Node

Reactive Programming Reactive Programming

Stateful Entity Stateful Entity

Microsystem (almost)

Node

Reactive Programming

REST Streaming

Stateless Behavior

\ 4
i 2
Node
Reactive Programming
Stateful Entity
L 4

SCALING (STATELESS) BEHAVIOR

SCALING (STATEFUL) ENTITIES

.
‘

THE ENTITY CAN BECOME AN

ESCAPE ROUTE

FROM REALITY.
A SAFE ISLAND OF

DETERMINISM AND
STRONG CONSISTENCY

Microsystem

Reactive Programming

Stateless Behavior

Reactive Programming

Stateful Entity

Microsystem

Reactive Programming

Stateless Behavior

Reactive Programming

Stateful Entity

REACTIVE SYSTEMS
HELPS MAKING THE ==

MICROSERVICE (MICROSYSTEM)

RESILIENT AND

ELASTICALLY SCALABLE

LEARN MORE AT REACTIVEMANIFESTO0.0RG

message-driven

REACTIVE SYSTEMS ARE BASED ON

ASYNCHRONOUS
MESSAGE-PASSING

|||||| bt AL L L L L b RO ST a1% v
, nnoooo1,.,”-.Q¢-nuuu.......,..,fﬁll . y
UL LA S Sttt e Al add® 1
LA il fle
WSt il e
-

aad 2270k
GJ.---“;Q...Oﬂﬂﬂ.ﬁ.cﬂ.‘ »
Nuuiliass s s s adt) gm ,
Miiies s sait ane g o
N e (IS
A A A T T Tt L T) b
SSLU Liiise e o g SHUIEE § o
S e tteg 180 »
Sag it ss s Nt AN ,
u..... ,N::,-,nlo,,...,.,., AR S &

EERpppy
EEEEEYY

)

;‘llllll
1))

gy .AA:::AQ,.“..Q.AA.AAAAAA-:..AA.A‘.A.A.A.‘W,.,., .,‘ '..,‘ .““.. ’ .

» Wy :::Al.. ..AAA ’ Va =N N “
aiiiidisse e a et AN o ® TR aa e a.
P D T A A A e T
. i gy
AL est et tagateg 8 g ¢ 8 g ({danan
:.ﬁ-.ooo.o..u-: Al,.,Q,O..,Q,AA.A.l/.’, . A Pt b & .
et eet a0 g% g Hag * o "V (dda. o
:.u«qooﬂoouu:l“‘,. .,‘.,AAA..T.,., . » ‘,‘A AAA. -.‘ A L
G g Y9 " a ™ WAL C Al TP i | X \
(e tve g B0 L8 L8 o e " ® 5" ; .“
««««ﬁ««ﬁﬂ“‘l-\\.,’ . - . . . ’ “‘.«, 4 . ., ; ,.‘A AAA. o .
B SRR MA Lol DAL T it £ 1l
G sy ® LW st g "y :A.. .
.Q“Q«««QQ««. ". - > .Q 4“ .. \ .A 4 N /\/\. -
Wi tag® 9™ 8 9 Y L { s :
e e e B e tee st (e

Ty e
W lee® _® e Y Tugteg t Yy, >
v Q_\Q - ,‘.. .,’ ..,Q,Q.QQQQ..,‘, ,.Q ‘«ﬂ / /.z.‘ - /.
e , Ll LR C -
9% o® o® Yt Ny .A«««««ﬂ ,QQ.(" -
ey ® T ® o.o,,.ﬂ&u-«nwu«,s«« AL 00 -
T2 e® 6% oo . e Y Yo 'Vy ‘/./.‘\/)
Q\\\\\\\\\",.. ‘. ’.. % Yo' ¥ ‘Q ,“ /“r 3 ‘ /.‘ > .
Y YaY av oW ,,Q\Q,,ﬂ,,Q,‘,_‘f‘/‘/
AL A P R A AL ol ! . 3
s e e At e S g
7 aeseset i St et et et gt S e SN e o
7 e OOQQQQ\\\\\\\Q&w..,\', ‘,“Q\\.’,,- P ‘/ ,/../‘/\/
OSONIALLAAM O Y MGl O S \ ,.‘,Q./ ”
LGN M ML T R St Lol S S - . SO ’.
.quooooons\\\QQoooQ"0.00, U ARl S S RS R B ‘Q L 4 A F
WQQQQOOOOQQ\\\\\‘O....QQ.‘Q...’ " AP A S A » L 4 Yoy ‘ <
GOAAAA SRS TAC O S S Al A R e St 4 £ A
SILLLCOOT P IR SNl 6 5 Sl et R AL F
YONNPYII VY S & - 0:0.0\‘ .. ﬂ - > - ‘ /‘ S
e et 100t % et Lo e Ty

ALLOWS DECOUPLING IN

ALLOWS FOR LOCATION TRANSPARENCY

ONE COMMUNICATION ABSTRACTION ACROSS ALL DIMENSIONS OF SCALE

CORE = SOCKET = CPU =
CONTAINER = SERVER =

RACK = DATA CENTER =
SYSTEM

BUT I'LL TAKE MY
TIME ANYWHERE.
I'M FREE TO SPEAK
MY MIND ANYWHERE. !
AND I'LL REDEFINE '

ANYWHERE. S |
ANYWHERE | ROAM. . y/)
WHERE | LAY MY ¥\
HEAD IS HOME.

- WHEREVER | MAY ROAM BY LARS
ULRICH. JAMES HETFIELD
(METALLICA)

.

. THE PATH TOWARDS

"a - F s
- -
- ‘ - SR WSO o

S e ¥ '/ B ¥

EALING SYSTEMS

o

E” m'ﬁﬂ,“ Bk 4

=g 3&/ '

Microsystem

Reactive System

Service
Discovery

Service
Gateway

Reactive Programming

A
Stateless Behavior

Reactive Programming

Stateful Entity

O

Y - -) > TG ~ " - E
~— . N \ r, s P Bwsmr | - -~ B o A ———.
(.“"‘f‘“ -l y ' 3 \ : S T i -
- - \ L Fy ! il - L i v Ve . s ~ , ~ ~ S
4 R AR il S T . ’,',: N BZ G e N A braden T

INSIDE DATA: OUR CURRENT PRESENT (STATE)

OUTSIDE DATA: BLAST FROM THE PAST (FACTS)

BETWEEN SERVICES: HOPE FOR THE FUTURE (COMMANDS)
- PAT HELLAND. DATA ON THE INSIDE VS DATA ON THE QUTSIDE

PRACTICE

EVENIS-FIRS]

DOMAIN-DRIVEN DESIGN

DON'T FOCUS ON THE THINGS-THE NOUNS
FOCUS ON WHAT HAPPENS-THE EVENTS

EEEEEE

EVENITS DEFINE

THE BOUNDED CONTEXT

tVENTS REPRESENT FACTS

TO CONDENSE FACT
FROM THE VAPOR OF
NUANCE

- NEAL STEPHENSON. SNOW CRASH |

[—
p—
o
(aa]
<C
O
=
L
—
=
-
o
-
L
(m o
<
L]
=
(|
-
<<

ALTERNATIVE FACTS

UNDERSTAND HOW FACTS ARE CAUSALLY RELATED

HOW FACTS FLOW IN THE SYSTEM

B .}.' Peter Alvaro

A l palvaro

| shall never tire of writing "causality is
reachability in spacetime” on the blackboard

RETWEETS LIKES : ‘-'j R :.& 3 p (3 s ‘i:
Eﬁ £ > ' A AN m a = %

s

e
——
.
_ B
K CoonOncomuLs commr—c

-
e

WE NEED TO

LU

~ - "5-h-u--.‘-‘.~ L

~'~ -~ N«———&-—.—._—&J BT ’..“‘;"-’

(:

: PN
. Se ‘. .
— o
b & _ B S wr h)‘-“'— - - =Y - p——
A S - — g’i¢~"5f-> - : 2% S &
U . - _ -y »P,.‘._:\Q :

- - R : : . : :
—— T e HO -) - r\-"~‘ - . Pt \) \

— — — cal i - 1 1 5 T A ‘ :
- - _ - —— =2 = 3 R ¢

- L. L L c=> :

WR

-

- N ~ ‘. . E l .
= N 2 - P
' Sy R ol . ! el

THE TRUTH IS THE
LOG.
THE DATABASE IS A
CACHE OF A SUBSET
OF THE LOG.

- PAT HELLAND

Immutability Changes Everything

Pat Helland
Salesforce.com
One Market Street, #300
San Francisco, CA 94105 USA
01(415) 546-5881
phelland@salesforce.com

ABSTRACT

There is an inexorable trend towards storing and sending
immutable data. We need immutability to coordinate at a distance
and we can afford immutability, as storage gets cheaper.

This paper is simply an amuse-bouche on the repeated patterns of
computing that leverage immutability. Climbing up and down the
compute stack really does yield a sense of déja vu all over again.

1. INTRODUCTION

It wasn’t that long ago that computation was expensive, disk
storage was expensive, DRAM was expensive, but coordination
with latches was cheap. Now, all these have changed using cheap
computation (with many-core), cheap commodity disks, and
cheap DRAM and SSD, while coordination with latches gets

harder because latch latency loses lots of instruction opportun:
afford to keep immutable copies of lots of data, and
1.1 More Storage, Distribution, & Ambiguity

We have increasing storage as the cost per terabyte of disk keeps
dropping. This means we can keep lots of data for a long time.
We have increasing distribution as more and more data and work
are spread across a great distance. Data within a datacenter seems
“far away”. Data within a many-core chip may seem “far away”.
We have increasing ambiguity when trying to coordinate with
systems that are far away... more stuff has happened since you’ve
heard the news. Can you take action with incomplete knowledge?
Can you wait for enough knowledge?

1.2 Turtles All the Way Down [17]

As various technological areas have evolved recently, they have
responded to these trends of increasing storage, distribution, and
ambiguity by using immutable data in some very fun ways. We
will explore how apps use immutability in their ongoing work,
how apps generate immutable DataSets for later offline analysis,
how SQL can expose and process immutable snapshots, how
massively parallel “Big Data” work relies on immutable DataSets.
This leads us to looking at the ways in which semantically
immutable DataSets may be altered while remaining immutable.

Next, we consider how updatability is layered atop the creation of
new immutable files via techniques like LSF (Log Structure File
systems), COW (Copy on Write), and LSM (Log Structured
Merge trees). We examine how replicated and distributed file
systems depend on immutability to eliminate anomalies.
This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits
distribution and reproduction in any medium as well allowing
derivative works, provided that you attribute the original work to the
author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research
(CIDR ’15) January 4-7, 2015, Asilomar, California, USA.

Next, we discuss how the hardware folks have joined the party by
leveraging these tricks in SSD and HDD. See Figure 1.
Finally, we look at some trade-offs with using immutable data.

App over Immutable Data:
Append-Only Apps Record Facts then Derive
Massively Parallel “Big Data” gz;a:s(:tgvnte Immutable
Subjectively Immutable DataSets | Interpret Data as Immutable

i::;p ge ove
LSF, LSM, and COW Immutable Files by Append

Replication of Files/Blocks
without Update Anomalies

te Bl
5 gt w w
Shingles on HDD Large Physical Rewrites

Figure 1. Immutability is a key architectural concept at many layers
of the stack.

2. Accountants Don’t Use Erasers
Lots of computing can be characterized as “append-only”. This
section looks at some of the ways this is commonly accomplished.

2.1 “Append-Only” Computing

May kinds of computing are “Append-Only”. Observations are
recorded forever (or for a long time). Derived results are
calculated on demand (or periodically pre-calculated).

This is similar to a database management system. Transaction
logs record all the changes made to the database. High-speed
appends are the only way to change the log. From this
perspective, the contents of the database hold a caching of the
latest record values in the logs. The truth is the log. The database
is a cache of a subset of the log. That cached subset happens to be
the latest value of each record and index value from the log.

2.2 Accounting: Observed & Derived Facts

Accountants don’t use erasers or they go to jail. All entries in a
ledger remain in the ledger. Corrections can be made but only by
making new entries in the ledger. When a company’s quarterly
results are published, they include small corrections to the
previous quarter. Small fixes are OK! They are append-only, too!

Some entries describe observed facts. For example, receiving a
debit or credit against a checking account is an observed fact.

Some entries describe derived facts. Based on the observations,
we can calculate something new. For example, amortized capital
expenses based upon a rate and a cost. Another example is the
current bank account balance with applied debits and credits.

IS DEAD

I "L

GING

IS A DATABASE OF THE PAST
NOT JUST A DATABASE OF THE PRESENT

EVENT LOGGING AVOIDS THE INFAMOUS

0BJECT-RELATIONAL
IMPEDENCE MISMATCH

UNTANGLE THE

READ & WRITE

MODELS WITH
CARS & EVENT SOURCING

Microsystem

Reactive System

Service
Discovery

Service
Gateway

Reactive Programming

Stateless Behavior

Authentication

Reactive Programming

Stateful Entity

BUT WHAT ABOUT

TRANSACTIONS?

IN GENERAL.
APPLICATION
DEVELOPERS
SIMPLY DO NOT
IMPLEMENT
LARGE SCALABLE
APPLICATIONS
ASSUMING
DISTRIBUTED
TRANSACTIONS.

- PAT HELLAND

Life beyond Distributed Transactions:
an Apostate’s Opinion
Position Paper

Pat Helland

Amazon.Com
705 Fifth Ave South
Seattle, WA 98104

USA

PHelland@Amazon.com

The positions expressed in this paper are
personal opinions and do not in any way reflect
the positions of my employer Amazon.com.

ABSTRACT

Many decades of work have been invested in the
area of distributed transactions including
protocols such as 2PC, Paxos, and various
approaches to quorum. These protocols provide
the application programmer a fagade of global
serializability. Personally, I have invested a non-
trivial portion of my career as a strong advocate
for the implementation and use of platforms
providing guarantees of global serializability.
My experience over the last decade has led me to
liken these platforms to the Maginot Line’. In
general, application developers simply do not
implement large scalable applications assuming
distributed transactions. When they attempt to
use distributed transactions, the projects founder
because the performance costs and fragility make
them impractical. Natural selection kicks in...

! The Maginot Line was a huge fortress that ran the length
of the Franco-German border and was constructed at great
expense between World War I and World War II. It
successfully kept the German army from directly crossing
the border between France and Germany. It was quickly
bypassed by the Germans in 1940 who invaded through
Belgium.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make
derivative works and make commercial use of the work, but you must
attribute the work to the author and CIDR 2007.

3" Biennial Conference on Innovative DataSystems Research (CIDR)
January 7-10, Asilomar, California USA.

Instead, applications are built using different
techniques which do not provide the same
transactional guarantees but still meet the needs
of their businesses.

This paper explores and names some of the
practical approaches used in the implementations
of large-scale mission-critical applications in a
world which rejects distributed transactions. We
discuss the management of fine-grained pieces of
application data which may be repartitioned over
time as the application grows. We also discuss
the design patterns used in sending messages
between these repartitionable pieces of data.

The reason for starting this discussion is to raise
awareness of new patterns for two reasons. First,
it is my belief that this awareness can ease the
challenges of people hand-crafting very large
scalable applications. Second, by observing the
patterns, hopefully the industry can work
towards the creation of platforms that make it
easier to build these very large applications.

1. INTRODUCTION

Let’s examine some goals for this paper, some
assumptions that I am making for this discussion, and
then some opinions derived from the assumptions. While
I am keenly interested in high availability, this paper will
ignore that issue and focus on scalability alone. In
particular, we focus on the implications that fall out of
assuming we cannot have large-scale distributed
transactions.

Goals
This paper has three broad goals:
* Discuss Scalable Applications
Many of the requirements for the design of scalable

systems are understood implicitly by many application
designers who build large systems.

APOLOGIZE.
COMPENSAIE.

PASSENGER TICKET AND BAGGAGE CHE
ANSPORTATION “VOUCHER

CHANGE COUPON 042430
n?WWBﬂHrSFDIBARf?ﬁ@ﬁm
?M?k@sfﬁﬁ

RIEF ARE SIS ﬂ] ' FCI SER
* I

'oq E

Y CIC E 3 ”?Efmﬁ?%dﬁ
JLoaChutE RLSTRICTIONS
T nn V] = © -
\l SE) 7 DN 'O CHER,
A: 2L [} 5= . INC 7/ MERIC
N I £ v "N 4ALL CL
ol

ALLOW PCS CKD WT CKD

‘l;gJ FOr \ND SERIAL NUMBER CK

1l Oul 0424308333 1

DO NOT MARK OR WRITE IN THE WHITE AREA ABOVE

IN SUMMARY

1. DON'T BUILD MICROLITHS
2. MICROSERVICES COME IN (DISTRIBUTED) SYSTEMS
3. MICROSERVICES COME AS (MICRO)SYSTEMS
4.EMBRACE THE REACTIVE PRINCIPLES
0. EMBRACE EVENT-FIRST DDD & PERSISTENCE
6. PROFIT!

TRY THE

LAGOM

~
MICROSERVICES p @y laagon
FRAMEWORK ®lag

POWERED BY AKKA & PLAY
LAGOMFRAMEWORK.COM

O'REILLY"

Reactive
Microservices

I. EA R N Architecture
M 0 R E Design Principles for Distributed Systems

DOWNLOAD MY BOOK FOR FREE AT:
BITLY/REACTIVE-MICROSERVICES-ARCHITECTURE

Jonas Bonér

Ml Lightbend

