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I, Programmer
● Performance Engineer
● Blog: http://psy-lob-saw.blogspot.com 
● Open Source developer/contributor:

– JCTools
– Aeron/Agrona
– Honest-Profiler/perf-map-agent

● Cape Town JUG Organizer

http://psy-lob-saw.blogspot.com/


  

What is the
ROOT

of
ALL EVIL?



  

We should forget 
about small 

efficiencies, say 
about 97% of the 
time: premature 

optimization is the 
root of all evil.

­ Donald Knuth



  

Solution?
● Get requirements
● Measure!
● Profile!
● Measure!



  

✔Java?
✗ FlameGraphs?
✗ Perf?



  

● Brendan Gregg, Netflix

● Super performance dude

● Invented FlameGraphs:
http://queue.acm.org/detail.cfm?id=2927301

http://queue.acm.org/detail.cfm?id=2927301


  

“Flame graphs are a visualization of profiled 
software, allowing the most frequent code-

paths to be identified quickly and accurately.”

● see: http://www.brendangregg.com/flamegraphs.html
● git clone https://github.com/brendangregg/FlameGraph.git

http://www.brendangregg.com/flamegraphs.html
https://github.com/brendangregg/FlameGraph.git


  

FlameGraph



  

Input: Sampling Profilers
● Collect stacks
● X samples per second
● Present data

– Flat view
– Tree view
– FlameGraph



  

Flat View



  

Tree View



  

FlameGraph



  

How Can I Get One?

● Profiler => stack traces (e.g. a JFR file or hprof file)

● Stack traces => ./stackcollapse.pl -> collapsed stacks
– Text transformation => HACKABLE!

● Collapsed stacks -> ./flamegraph.pl -> SVG
– Text transformation => SUPER HACKABLE!



  

FlameGraph



  



  

Enjoying Your New Helmet!

● Y-Axis: Stack depth
– Top methods are the leaf methods
– Bottom methods are roots of the 

stack (e.g. Thread::run)

● X-Axis: Profile populations 
sorted alphabetically
– Wider frames == more samples 

== where ‘time’ is spent

– Roots are wide, callees get 
narrower, tops are thin spikes



  

SWITCH TO BROWSER
SVGs In Slides suck...



  

What can we 
feed to the 

flames?



  

Java Profilers (typically) Care About

● Only Java Code

● Only some of the time



  



  

JVisualVM & co: Safepoint Bias
● Samples only at safepoint polls
● Each sample is a safepoint operation
● Each sample includes all threads
● ALWAYS AVAILABLE!
● Supported FlameGraph scripts:

– ./stackcollapse-jstack.pl
– ./stackcollapse-hprof.pl

http://psy-lob-saw.blogspot.co.uk/2016/02/why-most-sampling-java-profilers-are.html

http://psy-lob-saw.blogspot.co.uk/2016/02/why-most-sampling-java-profilers-are.html


  

JMC/Honest-Profiler: one eyed kings
● No safepoint bias!
● Java stack only
● Blind spots: GC/Deopt/Runtime stubs
● OpenJDK/Oracle(1.6+ HP/1.7u40+ JFR) + recent Zing
● Custom stack collapse tools exist:

– FlameGraphDumperApplication
– https://github.com/chrishantha/jfr-flame-graph

http://psy-lob-saw.blogspot.co.uk/2016/06/the-pros-and-cons-of-agct.html

http://psy-lob-saw.blogspot.co.uk/2016/06/the-pros-and-cons-of-agct.html


  

● OS
● JVM runtime (GC/Runtime/Compiler)
● Native libraries
● Your code?

– Interpreter (cold code)
– Compiled code (tiered compilation: 1..4)
– Inlined compiled code 

Keeping it REAL



  

Linux Perf (perf_events)
● System profiler
● Userspace + Kernel
● Standard tool
● Now works with Java!

https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page


  

Perf Profiling Java Credits
● Johannes Rudolph (@virtualvoid)
● Brendan Gregg (@brendangregg)
● OpenJDK Team
● Extras: @nitsanw + @tjake + others!

!!! OSS FTW !!!



  

Java Perf Profiling
● Linux only
● Oracle/OpenJDK(1.8u60+) + latest Zing
● Need permissions/some Linux fu
● Need perf-map-agent

http://psy-lob-saw.blogspot.co.uk/2017/02/flamegraphs-intro-fire-for-everyone.html

http://psy-lob-saw.blogspot.co.uk/2017/02/flamegraphs-intro-fire-for-everyone.html


  

What Do We Win?
● Java + Native + Kernel stack!
● HW Counters/Events support!
● Low overhead, no safepoint bias



  

What Do We Lose?
● Interpreter frames
● Broken stacks (might be fine on Java profilers)
● Limited stack depth (128)
● TOO MUCH INFORMATION!!!



  

Java Profile Portion
SVGs In Slides suck...



  

Java Threads
● Stubs
● Inlining
● Call to native
● Safepoints
● Park costs



  

Java Threads HACKAGE BONUS!
● Post process to sharpen
● Trim calls to native
● Collect BROKEN frames



  

Meta Profile
SVGs In Slides suck...



  

JVM Threads
● CPU utilization info
● Internal operation insight
● Confusing blocking behaviour
● Multi-threading pain



  

There’s MORE to explore!
● Machine level profile
● Application cluster profile
● Tons of perf features



  

An invitation to hack
● Add method self-percent coloring
● Add core utilization indication
● Multi threaded profiles
● Java profile enrichment (e.g. thread 

names/alloc rate)



  

Summary
● New tools for your belt!
● Tweak, hack & share!
● Profile at a wider scope!
● Enjoy :-)
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