

Illuminating The JVM

Nitsan Wakart (@nitsanw)

with FlameGraphs

Illuminating
The JVM with

FlameGraphs
Nitsan Wakart (@nitsanw)

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=196363

Thanks!

I, Programmer
● Performance Engineer
● Blog: http://psy-lob-saw.blogspot.com
● Open Source developer/contributor:

– JCTools
– Aeron/Agrona
– Honest-Profiler/perf-map-agent

● Cape Town JUG Organizer

http://psy-lob-saw.blogspot.com/

What is the
ROOT

of
ALL EVIL?

We should forget
about small

efficiencies, say
about 97% of the
time: premature

optimization is the
root of all evil.

­ Donald Knuth

Solution?
● Get requirements
● Measure!
● Profile!
● Measure!

✔Java?
✗ FlameGraphs?
✗ Perf?

● Brendan Gregg, Netflix

● Super performance dude

● Invented FlameGraphs:
http://queue.acm.org/detail.cfm?id=2927301

http://queue.acm.org/detail.cfm?id=2927301

“Flame graphs are a visualization of profiled
software, allowing the most frequent code-

paths to be identified quickly and accurately.”

● see: http://www.brendangregg.com/flamegraphs.html
● git clone https://github.com/brendangregg/FlameGraph.git

http://www.brendangregg.com/flamegraphs.html
https://github.com/brendangregg/FlameGraph.git

FlameGraph

Input: Sampling Profilers
● Collect stacks
● X samples per second
● Present data

– Flat view
– Tree view
– FlameGraph

Flat View

Tree View

FlameGraph

How Can I Get One?

● Profiler => stack traces (e.g. a JFR file or hprof file)

● Stack traces => ./stackcollapse.pl -> collapsed stacks
– Text transformation => HACKABLE!

● Collapsed stacks -> ./flamegraph.pl -> SVG
– Text transformation => SUPER HACKABLE!

FlameGraph

Enjoying Your New Helmet!

● Y-Axis: Stack depth
– Top methods are the leaf methods
– Bottom methods are roots of the

stack (e.g. Thread::run)

● X-Axis: Profile populations
sorted alphabetically
– Wider frames == more samples

== where ‘time’ is spent

– Roots are wide, callees get
narrower, tops are thin spikes

SWITCH TO BROWSER
SVGs In Slides suck...

What can we
feed to the

flames?

Java Profilers (typically) Care About

● Only Java Code

● Only some of the time

JVisualVM & co: Safepoint Bias
● Samples only at safepoint polls
● Each sample is a safepoint operation
● Each sample includes all threads
● ALWAYS AVAILABLE!
● Supported FlameGraph scripts:

– ./stackcollapse-jstack.pl
– ./stackcollapse-hprof.pl

http://psy-lob-saw.blogspot.co.uk/2016/02/why-most-sampling-java-profilers-are.html

http://psy-lob-saw.blogspot.co.uk/2016/02/why-most-sampling-java-profilers-are.html

JMC/Honest-Profiler: one eyed kings
● No safepoint bias!
● Java stack only
● Blind spots: GC/Deopt/Runtime stubs
● OpenJDK/Oracle(1.6+ HP/1.7u40+ JFR) + recent Zing
● Custom stack collapse tools exist:

– FlameGraphDumperApplication
– https://github.com/chrishantha/jfr-flame-graph

http://psy-lob-saw.blogspot.co.uk/2016/06/the-pros-and-cons-of-agct.html

http://psy-lob-saw.blogspot.co.uk/2016/06/the-pros-and-cons-of-agct.html

● OS
● JVM runtime (GC/Runtime/Compiler)
● Native libraries
● Your code?

– Interpreter (cold code)
– Compiled code (tiered compilation: 1..4)
– Inlined compiled code

Keeping it REAL

Linux Perf (perf_events)
● System profiler
● Userspace + Kernel
● Standard tool
● Now works with Java!

https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page

Perf Profiling Java Credits
● Johannes Rudolph (@virtualvoid)
● Brendan Gregg (@brendangregg)
● OpenJDK Team
● Extras: @nitsanw + @tjake + others!

!!! OSS FTW !!!

Java Perf Profiling
● Linux only
● Oracle/OpenJDK(1.8u60+) + latest Zing
● Need permissions/some Linux fu
● Need perf-map-agent

http://psy-lob-saw.blogspot.co.uk/2017/02/flamegraphs-intro-fire-for-everyone.html

http://psy-lob-saw.blogspot.co.uk/2017/02/flamegraphs-intro-fire-for-everyone.html

What Do We Win?
● Java + Native + Kernel stack!
● HW Counters/Events support!
● Low overhead, no safepoint bias

What Do We Lose?
● Interpreter frames
● Broken stacks (might be fine on Java profilers)
● Limited stack depth (128)
● TOO MUCH INFORMATION!!!

Java Profile Portion
SVGs In Slides suck...

Java Threads
● Stubs
● Inlining
● Call to native
● Safepoints
● Park costs

Java Threads HACKAGE BONUS!
● Post process to sharpen
● Trim calls to native
● Collect BROKEN frames

Meta Profile
SVGs In Slides suck...

JVM Threads
● CPU utilization info
● Internal operation insight
● Confusing blocking behaviour
● Multi-threading pain

There’s MORE to explore!
● Machine level profile
● Application cluster profile
● Tons of perf features

An invitation to hack
● Add method self-percent coloring
● Add core utilization indication
● Multi threaded profiles
● Java profile enrichment (e.g. thread

names/alloc rate)

Summary
● New tools for your belt!
● Tweak, hack & share!
● Profile at a wider scope!
● Enjoy :-)

	Slide 1
	Slide 2
	Thanks!
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

