
Julia: A modern language for modern ML

Dr. Viral Shah and Dr. Simon Byrne

www.juliacomputing.com

What we do: Modernize Technical Computing

Today’s technical computing landscape:
• Develop new learning algorithms
• Run them in parallel on large datasets
• Leverage accelerators like GPUs, Xeon Phis
• Embed into intelligent products

“Business as usual” will simply not do!

General Micro-benchmarks:
Julia performs almost as fast as C

• 10X	faster	than	Python
• 100X	faster	than	R	&	MATLAB

Performance benchmark relative to C. A value of 1 means as fast as C. Lower values are better.

• Gillespie	simulations	are	used	in	the	field	of	drug	discovery.
• Also	used	for	simulations	of	epidemiological	models	to	study	disease	propagation
• Julia	package	(Gillespie.jl)	is	the	state	of	the	art in	Gillespie	simulations
• https://github.com/openjournals/joss-

papers/blob/master/joss.00042/10.21105.joss.00042.pdf

Implementation Time per simulation (ms)
R (GillespieSSA) 894.25

R (handcoded) 1087.94

Rcpp (handcoded) 1.31

Julia (Gillespie.jl) 3.99

Julia (Gillespie.jl, passing object) 1.78

Julia (handcoded) 1.2

A real application: Gillespie simulations in systems biology
745x faster than R

Those who convert ideas to products fastest will win

Compress the
innovation cycle

with Julia

The last 25 years

Quants develop
algorithms

(Python, R, SAS,
Matlab)

DEPLOY

Computer
Scientists prepare

for production
(C++, C#, Java)

DEPLOY

Quants and
Computer
Scientists

collaborate on one
platform - JULIA

Julia offers competitive advantages to its users

Anthony Malakian, Waters Technology Magazine

Julia is poised to become one of the
leading tools deployed by developers
and programmers at banks, hedge funds,
regulators and vendors

Thank you for Julia. You've kindled
serious excitement. I am now working
toward replacing some of our
computationally intensive Matlab tools
with Julia.

Patrick Majors, Engineering Manager, Cooper Tires

Research anchored at MIT The Julia community: 225,000 users

Expecting to reach 1 million users and 10,000 enterprises by 2019

JuliaCon 2016: 50 talks and 250 attendees

Traction across Industries

FINANCE ENGINEERING IOT 3D PRINTING

Economic
Models at the NY

Fed

Air Collision
Avoidance for

FAA

Self-driving Cars
at UC Berkeley

3D Printing
Quadcopters at

Voxel8

Machine Learning

Mocha.jl

Knet.jl

Many machine learning frameworks Run on hardware of your choice

Merlin.jl

Machine Learning: Write once, Run everywhere

Machine Learning to build a sky atlas on 8000 cores at NERSC

• RecSys.jl - Large movie data set (500 million
parameters)

• Distributed Alternating Least Squares SVD-
based model executed in Julia and in Spark

• Faster:
• Original code in Scala
• Distributed Julia nearly 2x faster than Spark

• Better:
• Julia code is significantly more readable
• Easy to maintain and update

http://juliacomputing.com/blog/2016/04/22/a-parallel-recommendation-engine-in-julia.html

Netflix recommendation challenge: Faster than Spark

• Improving the Quantity and Quality of Information via Microrheology-Based Analytics

• Camera-based real-time particle tracking at KHz rates and Angstrom accuracy

• Real-time organoid analysis leading to precision medicine.

• Julia was the only system that allowed for real-time analysis of instrumentation data

High performance Microrheology at Path Bio
Analytics Analytics for Personalized Medicine

Normal Eye Fundus Eye Fundus Infected with Diabetic Retinopathy

http://juliacomputing.com/blog/2016/11/16/deep-eyes.html

Deep learning for diabetic retinopathy detection

• Deep learning model with MXNet

• Performance AND expressivity
• Easy to experiment

• Training on the CPU and GPU

• Explore pre-trained models

Neural style transfer

Finance

Solvency II Actuarial Capital Modeling

• Purpose of their Calculation Kernel
• Calculation of a Solvency II Balance Sheet

• Particularly focuses on the Solvency Capital Requirement
• Use of Monte Carlo Simulation, currently up to

500,000 scenarios
• Involves aggregation (summing up legal entities to a

Group), ranking and smoothing
• Generates various outputs for downstream reporting

“Solvency II compliant models in Julia are 1000x faster than
IBM Algorithmics, 10x lesser code and took 1/10 the time to
implement”

– Tim Thornham, Director of Financial Solutions Modeling

Economic Scenario Generator

• High-dimensional data set on which data
extraction, data reordering, and various statistical
kernel computations are performed

• Faster:
– Original code was in K
– Julia code is 4x-10x faster

• Better:
– Julia code is significantly more readable
– Easy to maintain and update
– Cost-effective

Mathematical Optimization

• Solving a large complex mathematical optimization problem for
mortgages

• Full optimization: (Faster Speed + Better Quality)
– MATLAB 2014a 558.094600 seconds, 3110 iterations
– Julia v0.4 1.833 seconds, 50 iterations (300x faster)

• Performance: Objective function only (100 iterations)
– MATLAB 2014a 2.69 seconds
– Julia v0.4 0.78 seconds (3.5x faster)

• Quality: Optimization value (11-parameter)
– MATLAB 2014a 4.277644613116166e+14 (3110 iterations)
– Julia v0.4 4.270887086707642e+14 (50 iterations)

Risk Analytics and Asset Management

• BlackRock is using Julia in its flagship
Aladdin product:

– Next generation analytics
– Risk management
– Asset management
– Time series analytics

• Significant gain in productivity and
scalability

Asset and Liabilities Modeling
at Brazilian Development Bank

• Manage >$1 Trillion in assets
• Multistage	stochastic	optimization	

solution	to	the	bank’s	returns	
– Choosing	 the	best	allocation,	funding	

and	hedge	decisions
– Subject	to	a	wide	range	of	business,	

political	and	market	restrictions

“Selected	Julia	for	its	speed,	elegance,	
and	JuMP – the	Julia	Mathematical	
Optimization	Package”	- Felipe	Tavares

Mathematical Optimization

Solver L
P

MILP SOC
P

MISOC
P

SDP NLP MINL
P

Other

Bonmin
(via
AmplNLwriter.jl)

✔ ✔ ✔ ✔

Cbc (.jl) ✔ ✔

Clp (.jl) ✔

Couenne
(via
ApmlNLWriter.jl)

✔ ✔ ✔ ✔

CPLEX (.jl) ✔ ✔ ✔ ✔
IP

callbacks

ECOS (.jl) ✔ ✔

GLPK (.jl) ✔ ✔
IP

callbacks

Gurobi (.jl) ✔ ✔ ✔ ✔
IP

callbacks

Ipopt (.jl) ✔ ✔

Artelys Knitro (.jl) ✔ ✔ ✔ ✔

Mosek (.jl) ✔ ✔ ✔ ✔ ✔ ✔1

NLopt (.jl) ✔

SCS (.jl) ✔ ✔ ✔

JuMP

MathProgBase.jl

Cbc.jl Clp.jl CPLEX.jl

ECOS.jl GLPK.jl Gurobi.jl

Ipopt.jl KNITRO.jl Mosek.jl

NLopt.jl SCS.jl

Key:
LP = Linear Programming
MILP = Mixed Integer Linear Programming
SOCP = Second-order cone programming

(includes convex QP and QCQP)
MISOCP = Mixed Integer SOCP
SDP = Semidefinite Programming
NLP = (constrained) Nonlinear Programming

(includes general QP and QCQP)
MINLP = Mixed Integer NLP

Notes:
1. Problem must be convex.

Solver capabilities accessible through JuMP

• Train	scheduling

• Self-driving	cars

• Electric	vehicle	charging

• Power	grid	control

• Plasma	physics

• Fantasy	sports

Some JuMP Applications

If you have a choice of several languages, it is, all other
things being equal, a mistake to program in anything but

the most powerful one.

Paul Graham in Beating the Averages

Co-Founder, Y-Combinator

www.juliacomputing.com

Simplicity meets Speed
Products that make Julia easy to use, easy to deploy and easy to scale

Simon Byrne - Julia Computing

What is Julia?
Julia is a modern, high-performance, dynamic programming language for technical computing.

modern: based on the lessons of the past 60 years
high-performance: as fast as traditional "fast" languages (Fortran/C/C++)
dynamic: "simple to use" (R/Matlab/Python)
technical computing: anything involving numbers

Why Julia?
To write fast, efficient code in an easy, elegant dynamic language

Avoids the two language problem:

My R/Python/Matlab code is too slow; I need to rewrite low-level routines in C/C++/Fortran

It is easy to "peek under the hood"
Most of Julia is written Julia
Can inspect various stages of the compilation process

It's free (download at www.julialang.org)
It's fun.
Play nicely with existing tools

In [1]:

accurately compute log(sum(exp(X)))
function logsumexp(X)
 u = maximum(X)

 t = 0.0

 for i = 1:length(X)
 t += exp(X[i]-u)

 end
 u + log(t)

end

Syntax heavily influenced by Python and Matlab

Basic differences from Python:

explicit end vs. significant whitespace
1-based vs. 0-based arrays

Basic differences from Matlab:

Functions can be defined anywhere
Scalars are not matrices in disguise
randn(10) gives you the thing you actually want.

Types
Every object has one:

In [2]:

typeof(1.0)

In [3]:

typeof(logsumexp)

In [4]:

typeof(Float64)

New types are declared with the type keyword:

Out[1]:

logsumexp (generic function with 1 method)

Out[2]:

Float64

Out[3]:

#logsumexp

Out[4]:

DataType

In [5]:

type Baz
 a::Float64

 b::Float64

end

In [6]:

b = Baz(1.0,2.0)

Unlike classes in Python/Matlab, user defined types are just as efficient as the builtin types (indeed, most
"builtin" types are actually written in Julia)

Generic functions and multiple dispatch
Julia functions are generic in that different code paths can be called depending on the type arguments.

In [7]:

f(x::Float64) = "$x is a float" # "$" does string substitution
f(x::Int) = "$x is an integer"

f(...) = ... is the same as function f(...) ... end
:: is an optional type specification.

In [8]:

f(1.0)

In [9]:

f(1)

Unlike traditional object oriented languages (C++, Python, Matlab), functions don't "belong" to a type. This
allows for multiple dispatch on any combination of arguments.

Out[6]:

Baz(1.0,2.0)

Out[7]:

f (generic function with 2 methods)

Out[8]:

"1.0 is a float"

Out[9]:

"1 is an integer"

In [10]:

f(x::Float64,y::Int) = "$x is a float, but $y is an integer"
f(x::Real,y::Real) = "$x and $y are both some sort of real" # Real is an abstrac
t "super" type
f(x,y) = "I don't know what $x and $y are" # fallback

In [11]:

f(1.0,1)

In [12]:

f(1,1)

In [13]:

f("aaa",2)

Say we want to change how Baz is printed, this is handled by the show function:

In [14]:

show(b)

show is a generic function: it is made up of different methods for differnt type signatures:

Out[10]:

f (generic function with 5 methods)

Out[11]:

"1.0 is a float, but 1 is an integer"

Out[12]:

"1 and 1 are both some sort of real"

Out[13]:

"I don't know what aaa and 2 are"

Baz(1.0,2.0)

In [15]:

methods(show)

Out[15]:

199 methods for generic function show:

show(io::IO, opt::Base.JLOptions) at options.jl:42
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/options.jl#L42)
show(io::IO, r::LinSpace) at range.jl:257
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/range.jl#L257)
show(io::IO, r::UnitRange) at range.jl:548
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/range.jl#L548)
show(io::IO, r::Base.OneTo) at range.jl:549
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/range.jl#L549)
show(io::IO, r::Range) at range.jl:547
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/range.jl#L547)
show(io::IO, z::Complex{Bool}) at complex.jl:83
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/complex.jl#L83)
show(io::IO, z::Complex) at complex.jl:68
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/complex.jl#L68)
show(io::IO, x::Rational) at rational.jl:47
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/rational.jl#L47)
show(io::IO, s::IntSet) at intset.jl:16
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/intset.jl#L16)
show(io::IO, ::Base.EnvHash) at env.jl:133
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/env.jl#L133)
show{K,V}(io::IO, t::Associative{K,V}) at dict.jl:52
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dict.jl#L52)
show(io::IO, iter::Union{Base.KeyIterator,Base.ValueIterator}) at dict.jl:93
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dict.jl#L93)
show(io::IO, s::Set) at set.jl:22
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/set.jl#L22)
show(io::IO, info::Base.Sys.CPUinfo) at sysinfo.jl:91
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sysinfo.jl#L91)
show(io::IO, s::IOStream) at iostream.jl:28
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/iostream.jl#L28)
show(io::IO, b::Base.AbstractIOBuffer) at iobuffer.jl:45
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/iobuffer.jl#L45)
show(io::IO, c::Char) at char.jl:50
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/char.jl#L50)
show(io::IO, exc::UnicodeError) at strings/errors.jl:14
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/strings/errors.jl#L14)
show(io::IO, s::Base.SubstitutionString) at regex.jl:236
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/regex.jl#L236)
show(io::IO, s::AbstractString) at strings/io.jl:72
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/strings/io.jl#L72)
show{S}(io::IO, g::Base.UTF8proc.GraphemeIterator{S}) at strings/utf8proc.jl:235
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/strings/utf8proc.jl#L235)
show(io::IO, re::Regex) at regex.jl:86
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/regex.jl#L86)
show(io::IO, m::RegexMatch) at regex.jl:116
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/regex.jl#L116)
show(io::IO, ctx::IOContext) at show.jl:72
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L72)
show(io::IO, f::Function) at show.jl:163

(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L163)
show(io::IO, x::Core.IntrinsicFunction) at show.jl:173
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L173)
show(io::IO, x::Union) at show.jl:177
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L177)
show(io::IO, x::TypeConstructor) at show.jl:182
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L182)
show(io::IO, t::Type{Base.WorkerState}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_MERGE}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_MERGE_FILE}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_MERGE_FILE_FAVOR}) at
Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_MERGE_PREFERENCE}) at
Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_MERGE_ANALYSIS}) at
Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_SUBMODULE_IGNORE}) at
Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_REPOSITORY_OPEN}) at
Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_BRANCH}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_FILEMODE}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_CREDTYPE}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_FEATURE}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_CONFIG}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Consts.GIT_OPT}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Error.Code}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, t::Type{Base.LibGit2.Error.Class}) at Enums.jl:105
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L105)
show(io::IO, x::DataType) at show.jl:192
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L192)
show(io::IO, tn::TypeName) at show.jl:225
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L225)
show(io::IO, ::Void) at show.jl:232
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L232)
show(io::IO, b::Bool) at show.jl:233
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L233)

(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L233)

show(io::IO, n::Signed) at show.jl:234
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L234)
show(io::IO, n::Unsigned) at show.jl:235
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L235)
show{T}(io::IO, p::Ptr{T}) at show.jl:238
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L238)
show(io::IO, p::Pair) at show.jl:241
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L241)
show(io::IO, m::Module) at show.jl:257
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L257)
show(io::IO, l::LambdaInfo) at show.jl:285
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L285)
show(io::IO, t::Tuple) at show.jl:376
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L376)
show(io::IO, v::SimpleVector) at show.jl:377
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L377)
show(io::IO, s::Symbol) at show.jl:379
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L379)
show(io::IO,
ex::Union{Expr,GlobalRef,GotoNode,LabelNode,LineNumberNode,QuoteNode,Slot})
at show.jl:411
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L411)
show(io::IO, tv::TypeVar) at show.jl:1049
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L1049)
show(io::IO, M::Bidiagonal) at linalg/bidiag.jl:173
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/linalg/bidiag.jl#L173)
show(io::IO, S::SparseMatrixCSC) at sparse/sparsematrix.jl:88
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/sparsematrix.jl#L88)
show(io::IO, x::AbstractSparseArray{Tv<:Any,Ti<:Any,1}) at
sparse/sparsevector.jl:683
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/sparsevector.jl#L683)
show(io::IO, FC::Base.SparseArrays.CHOLMOD.FactorComponent) at
sparse/cholmod.jl:1084
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/cholmod.jl#L1084)
show(io::IO, X::AbstractArray) at show.jl:1586
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L1586)
show{T}(io::IO, x::Nullable{T}) at nullable.jl:31
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/nullable.jl#L31)
show(io::IO, v::VersionNumber) at version.jl:64
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/version.jl#L64)
show(io::IO, e::Base.UVError) at libuv.jl:69
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/libuv.jl#L69)
show(io::IO, t::Task) at task.jl:50
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/task.jl#L50)
show(io::IO, stream::Base.LibuvServer) at stream.jl:203
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/stream.jl#L203)
show(io::IO, s::BufferStream) at stream.jl:1047
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/stream.jl#L1047)
show(io::IO, stream::UDPSocket) at socket.jl:362
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/socket.jl#L362)
show(io::IO, stream::Base.LibuvStream) at stream.jl:204

show(io::IO, stream::Base.LibuvStream) at stream.jl:204
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/stream.jl#L204)
show(io::IO, stream::Pipe) at stream.jl:562
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/stream.jl#L562)
show(io::IO, ip::IPv4) at socket.jl:37
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/socket.jl#L37)
show(io::IO, ip::IPv6) at socket.jl:91
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/socket.jl#L91)
show(io::IO, err::Base.DNSError) at socket.jl:537
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/socket.jl#L537)
show(io::IO, st::Base.Filesystem.StatStruct) at stat.jl:60
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/stat.jl#L60)
show(io::IO, cmd::Cmd) at process.jl:103
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/process.jl#L103)
show(io::IO, cmds::Union{Base.ErrOrCmds,Base.OrCmds}) at process.jl:121
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/process.jl#L121)
show(io::IO, cmds::Base.AndCmds) at process.jl:130
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/process.jl#L130)
show(io::IO, cr::Base.CmdRedirect) at process.jl:170
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/process.jl#L170)
show(io::IO, p::Base.Process) at process.jl:719
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/process.jl#L719)
show(io::IO, ::MIME{Symbol("text/html")}, m::Method; kwtype) at
methodshow.jl:199
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L199)
show(io::IO, mime::MIME{Symbol("text/html")}, ms::Base.MethodList) at
methodshow.jl:245
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L245)
show(io::IO, mime::MIME{Symbol("text/html")}, mt::MethodTable) at
methodshow.jl:261
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L261)
show(io::IO, mime::MIME{Symbol("text/html")}, mt::AbstractArray{Method,1}) at
methodshow.jl:266
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L266)
show(io::IO, ::MIME{Symbol("text/plain")}, t::Type{Base.WorkerState}) at
Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/csv")}, a) at datafmt.jl:712
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/datafmt.jl#L712)
show(io::IO, ::MIME{Symbol("text/tab-separated-values")}, a) at datafmt.jl:713
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/datafmt.jl#L713)
show(io::IO, ::MIME{Symbol("text/plain")},
iter::Union{Base.KeyIterator,Base.ValueIterator}) at replutil.jl:8
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L8)
show{K,V}(io::IO, ::MIME{Symbol("text/plain")}, t::Associative{K,V}) at
replutil.jl:39
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L39)
show(io::IO, ::MIME{Symbol("text/plain")}, f::Function) at replutil.jl:100
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L100)
show(io::IO, ::MIME{Symbol("text/plain")}, l::LambdaInfo) at replutil.jl:117
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L117)
show(io::IO, ::MIME{Symbol("text/plain")}, r::LinSpace) at replutil.jl:138
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L138)

(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L138)

show(io::IO, ::MIME{Symbol("text/plain")}, t::Task) at replutil.jl:146
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L146)
show(io::IO, ::MIME{Symbol("text/plain")}, r::Range) at replutil.jl:154
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L154)
show(io::IO, ::MIME{Symbol("text/plain")}, S::SparseMatrixCSC) at
sparse/sparsematrix.jl:80
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/sparsematrix.jl#L80)
show(io::IO, ::MIME{Symbol("text/plain")},
x::AbstractSparseArray{Tv<:Any,Ti<:Any,1}) at sparse/sparsevector.jl:677
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/sparsevector.jl#L677)
show(io::IO, ::MIME{Symbol("text/plain")},
FC::Base.SparseArrays.CHOLMOD.FactorComponent) at
sparse/cholmod.jl:1097
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/cholmod.jl#L1097)
show(io::IO, ::MIME{Symbol("text/plain")}, X::AbstractArray) at replutil.jl:153
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L153)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_MERGE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_MERGE_FILE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_MERGE_FILE_FAVOR}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_MERGE_PREFERENCE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_MERGE_ANALYSIS}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_SUBMODULE_IGNORE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_REPOSITORY_OPEN}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_BRANCH}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_FILEMODE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_CREDTYPE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_FEATURE}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_CONFIG}) at Enums.jl:108

t::Type{Base.LibGit2.Consts.GIT_CONFIG}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
t::Type{Base.LibGit2.Consts.GIT_OPT}) at Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")}, t::Type{Base.LibGit2.Error.Code}) at
Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")}, t::Type{Base.LibGit2.Error.Class}) at
Enums.jl:108
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L108)
show(io::IO, ::MIME{Symbol("text/plain")},
F::Base.SparseArrays.CHOLMOD.Factor) at sparse/cholmod.jl:1098
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/cholmod.jl#L1098)
show(io::IO, ::MIME{Symbol("text/plain")}, x) at replutil.jl:4
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/replutil.jl#L4)
show(io::IO, ::MIME{Symbol("text/markdown")}, md::Base.Markdown.MD) at
markdown/render/plain.jl:140
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/render/plain.jl#L140)
show(io::IO, ::MIME{Symbol("text/html")}, md::Base.Markdown.MD) at
markdown/render/html.jl:188
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/render/html.jl#L188)
show(io::IO, ::MIME{Symbol("text/latex")}, md::Base.Markdown.HorizontalRule)
at markdown/render/latex.jl:103
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/render/latex.jl#L103)
show(io::IO, ::MIME{Symbol("text/latex")}, md::Base.Markdown.MD) at
markdown/render/latex.jl:171
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/render/latex.jl#L171)
show(io::IO, ::MIME{Symbol("text/rst")}, md::Base.Markdown.MD) at
markdown/render/rst.jl:145
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/render/rst.jl#L145)
show{F<:Function}(io::IO, ::MIME{Symbol("text/html")}, h::HTML{F}) at
docs/utils.jl:35
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/docs/utils.jl#L35)
show(io::IO, ::MIME{Symbol("text/html")}, h::HTML) at docs/utils.jl:34
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/docs/utils.jl#L34)
show{mime}(io::IO, ::MIME{mime}) at multimedia.jl:18
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/multimedia.jl#L18)
show(io::IO, m::AbstractString, x) at multimedia.jl:33
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/multimedia.jl#L33)
show(io::IO, x::Union{Float32,Float64}) at grisu/grisu.jl:120
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/grisu/grisu.jl#L120)
show(io::IO, x::Float16) at grisu/grisu.jl:128
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/grisu/grisu.jl#L128)
show(io::IO, m::Method; kwtype) at methodshow.jl:74
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L74)
show(io::IO, ms::Base.MethodList) at methodshow.jl:149
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L149)
show(io::IO, mt::MethodTable) at methodshow.jl:150
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/methodshow.jl#L150)
show(io::IO, x::BigInt) at gmp.jl:514
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/gmp.jl#L514)
show(io::IO, b::BigFloat) at mpfr.jl:869

show(io::IO, b::BigFloat) at mpfr.jl:869
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/mpfr.jl#L869)
show(io::IO, u::Base.Random.UUID) at random.jl:1320
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/random.jl#L1320)
show(io::IO, c::Channel) at channels.jl:106
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/channels.jl#L106)
show(io::IO, x::Base.WorkerState) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, manager::Base.SSHManager) at managers.jl:139
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/managers.jl#L139)
show(io::IO, manager::Base.LocalManager) at managers.jl:309
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/managers.jl#L309)
show(io::IO, ex::Base.PrecompilableError) at loading.jl:266
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/loading.jl#L266)
show(io::IO, t::Base.Test.Pass) at test.jl:46
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/test.jl#L46)
show(io::IO, t::Base.Test.Fail) at test.jl:71
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/test.jl#L71)
show(io::IO, t::Base.Test.Error) at test.jl:103
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/test.jl#L103)
show(io::IO, t::Base.Test.Broken) at test.jl:141
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/test.jl#L141)
show(io::IO, ex::Base.Test.TestSetException) at test.jl:374
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/test.jl#L374)
show(io::IO, s::Base.LineEdit.MIState) at LineEdit.jl:33
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/LineEdit.jl#L33)
show(io::IO, x::Base.LineEdit.Prompt) at LineEdit.jl:52
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/LineEdit.jl#L52)
show(io::IO, s::Base.LineEdit.PrefixSearchState) at LineEdit.jl:1038
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/LineEdit.jl#L1038)
show{T,S<:AbstractArray{T,2}}(io::IO, C::Base.LinAlg.Cholesky{T,S}) at
linalg/cholesky.jl:376
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/linalg/cholesky.jl#L376)
show(io::IO, J::UniformScaling) at linalg/uniformscaling.jl:21
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/linalg/uniformscaling.jl#L21)
show{sym}(io::IO, x::Irrational{sym}) at irrationals.jl:7
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/irrationals.jl#L7)
show(io::IO, p::Base.DFT.ScaledPlan) at dft.jl:252
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dft.jl#L252)
show{T,K,inplace}(io::IO, p::Base.DFT.FFTW.cFFTWPlan{T,K,inplace,N<:Any}) at
fft/FFTW.jl:289
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/fft/FFTW.jl#L289)
show{T,K,inplace}(io::IO, p::Base.DFT.FFTW.rFFTWPlan{T,K,inplace,N<:Any}) at
fft/FFTW.jl:296
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/fft/FFTW.jl#L296)
show{T,K,inplace}(io::IO, p::Base.DFT.FFTW.r2rFFTWPlan{T,K,inplace,N<:Any}) at
fft/FFTW.jl:304
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/fft/FFTW.jl#L304)
show{T,K,inplace}(io::IO, p::Base.DFT.FFTW.DCTPlan{T,K,inplace}) at fft/dct.jl:24
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/fft/dct.jl#L24)
show(io::IO, x::Base.LibGit2.Consts.GIT_MERGE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_MERGE_FILE) at Enums.jl:96

show(io::IO, x::Base.LibGit2.Consts.GIT_MERGE_FILE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_MERGE_FILE_FAVOR) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_MERGE_PREFERENCE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_MERGE_ANALYSIS) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_SUBMODULE_IGNORE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_REPOSITORY_OPEN) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_BRANCH) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_FILEMODE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_CREDTYPE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_FEATURE) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_CONFIG) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Consts.GIT_OPT) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, ie::Base.LibGit2.IndexEntry) at libgit2/types.jl:502
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/libgit2/types.jl#L502)
show(io::IO, rbo::Base.LibGit2.RebaseOperation) at libgit2/types.jl:539
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/libgit2/types.jl#L539)
show(io::IO, x::Base.LibGit2.Error.Code) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, x::Base.LibGit2.Error.Class) at Enums.jl:96
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/Enums.jl#L96)
show(io::IO, err::Base.LibGit2.Error.GitError) at libgit2/error.jl:71
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/libgit2/error.jl#L71)
show(io::IO, id::Base.LibGit2.Oid) at libgit2/oid.jl:71
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/libgit2/oid.jl#L71)
show(io::IO, i::Base.Pkg.Types.VersionInterval) at pkg/types.jl:15
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/pkg/types.jl#L15)
show(io::IO, s::Base.Pkg.Types.VersionSet) at pkg/types.jl:39
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/pkg/types.jl#L39)
show(io::IO, a::Base.Pkg.Types.Available) at pkg/types.jl:73
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/pkg/types.jl#L73)
show(io::IO, f::Base.Pkg.Types.Fixed) at pkg/types.jl:86
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/pkg/types.jl#L86)
show(io::IO, frame::StackFrame; full_path) at stacktraces.jl:204
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/stacktraces.jl#L204)
show(io::IO, x::Base.Dates.Period) at dates/periods.jl:45
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dates/periods.jl#L45)
show(io::IO, x::Base.Dates.CompoundPeriod) at dates/periods.jl:308
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dates/periods.jl#L308)
show(io::IO, df::Base.Dates.DateFunction) at dates/adjusters.jl:140
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dates/adjusters.jl#L140)
show(io::IO, x::DateTime) at dates/io.jl:16

Most show methods take an IO object as a first argument

this allows writing to different places (STDOUT, buffers, files, etc.)

There is also a generic single argument method

show(x) = show(STDOUT, x)

which prints to STDOUT by default.

show(io::IO, x::DateTime) at dates/io.jl:16
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dates/io.jl#L16)
show(io::IO, x::Date) at dates/io.jl:24
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/dates/io.jl#L24)
show(io::IO, F::Base.SparseArrays.UMFPACK.UmfpackLU) at
sparse/umfpack.jl:177
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/umfpack.jl#L177)
show(io::IO, F::Base.SparseArrays.CHOLMOD.Factor) at sparse/cholmod.jl:1079
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/sparse/cholmod.jl#L1079)
show(io::IO, tex::Base.Markdown.LaTeX) at markdown/IPython/IPython.jl:25
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/IPython/IPython.jl#L25)
show(io::IO, md::Base.Markdown.MD) at markdown/render/plain.jl:139
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/markdown/render/plain.jl#L139)
show(io::IO, b::Base.Docs.Binding) at docs/bindings.jl:35
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/docs/bindings.jl#L35)
show(io::IO, t::Text) at docs/utils.jl:73
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/docs/utils.jl#L73)
show(io::IO, x::Nettle.HashType) at /Users/simon/.julia/v0.5/Nettle/src/hash.jl:51
(https://github.com/staticfloat/Nettle.jl/tree/f20cbb3dfc7c31eb0cce3c3f4b05c53f92c58c32/src/hash.jl#L51)
show(io::IO, x::Nettle.Hasher) at /Users/simon/.julia/v0.5/Nettle/src/hash.jl:56
(https://github.com/staticfloat/Nettle.jl/tree/f20cbb3dfc7c31eb0cce3c3f4b05c53f92c58c32/src/hash.jl#L56)
show(io::IO, x::Nettle.HMACState) at /Users/simon/.julia/v0.5/Nettle/src/hmac.jl:53
(https://github.com/staticfloat/Nettle.jl/tree/f20cbb3dfc7c31eb0cce3c3f4b05c53f92c58c32/src/hmac.jl#L53)
show(io::IO, x::Nettle.CipherType) at
/Users/simon/.julia/v0.5/Nettle/src/cipher.jl:287
(https://github.com/staticfloat/Nettle.jl/tree/f20cbb3dfc7c31eb0cce3c3f4b05c53f92c58c32/src/cipher.jl#L287)
show(io::IO, x::Nettle.Encryptor) at /Users/simon/.julia/v0.5/Nettle/src/cipher.jl:292
(https://github.com/staticfloat/Nettle.jl/tree/f20cbb3dfc7c31eb0cce3c3f4b05c53f92c58c32/src/cipher.jl#L292)
show(io::IO, x::Nettle.Decryptor) at /Users/simon/.julia/v0.5/Nettle/src/cipher.jl:293
(https://github.com/staticfloat/Nettle.jl/tree/f20cbb3dfc7c31eb0cce3c3f4b05c53f92c58c32/src/cipher.jl#L293)
show(io::IO, msg::IJulia.Msg) at /Users/simon/.julia/v0.5/IJulia/src/msg.jl:42
(https://github.com/JuliaLang/IJulia.jl/tree/78106bcd813041fa8ed87a2ff343145c4d33d025/src/msg.jl#L42)
show(io::IO, x::ANY<:Any) at show.jl:116
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/show.jl#L116)
show(x) at coreio.jl:3
(https://github.com/JuliaLang/julia/tree/3c9d75391c72d7c32eea75ff187ce77b2d5effc8/base/coreio.jl#L3)

In [16]:

import Base.show # we need to import to extend

show(io::IO, b::Baz) = print(io, "This is a Baz object, with a=$(b.a) and b=$(b.
b).")

In [17]:

b

This is incredibly powerful: for example, we can define different matrix multiplication methods for different

combinations of arguments (e.g. symmetric, triangular, sparse, etc.)

Just-in-time (JIT) compilation
Julia uses JIT compilation, using the LLVM backend (used by Clang, Rust, Swift).

Functions are the unit at which JIT compilation occurs.

Perf tip 1: Put code inside a function.

Compilation occurs for each type signature.

One of the main tricks used is type inference: try to figure out the type of each expression.

Perf tip 2: Try to write type-stable functions: for a given combination of input types, variables

should not change type.

e.g. this is why:

In [18]:

sqrt(-1.0)

sqrt(x::Float64) is known to return values of type Float64.

To get a Complex number you need to explicitly convert it beforehand:

Out[16]:

show (generic function with 200 methods)

Out[17]:

Baz(1.0,2.0)

DomainError:

sqrt will only return a complex result if called with a complex argu

ment. Try sqrt(complex(x)).

 in sqrt(::Float64) at ./math.jl:209

 in sqrt(::Float64) at /Applications/Julia-0.5.app/Contents/Resource

s/julia/lib/julia/sys.dylib:?

In [19]:

sqrt(complex(-1.0))

Custom numeric types
Julia integers are machine numbers, so can overflow

In [20]:

typemax(Int)

In [21]:

typemax(Int) + 1

Can be avoided by promoting to BigInt (arbitrary-precision integer)

In [22]:

big(typemax(Int)) + 1

Also supports rational arithmetic, via // operator:

In [23]:

1//3 + 7//6

In [24]:

1//10 < 0.1

BigFloat for high-precision calculations:

Out[19]:

0.0 + 1.0im

Out[20]:

9223372036854775807

Out[21]:

-9223372036854775808

Out[22]:

9223372036854775808

Out[23]:

3//2

Out[24]:

true

In [25]:

sin(big(1.0))

Generic linear algebra routines for non-BLAS types (Float32,Float64, complex versions thereof). For
example, high-precision using BigFloats:

In [26]:

big(randn(10,10)) \ big(randn(10))

Exact linear algebra using rational arithmetic:

In [27]:

X = rand(big(1:10),5,5) .// rand(1:10,5,5)

Out[25]:

8.414709848078965066525023216302989996225630607983710656727517099919

104043912398e-01

Out[26]:

10-element Array{BigFloat,1}:

 -1.8934308673726218855379404092631527298028839654055031055207684687

61361588959412

 -4.5288431265516172210106813497979471341534613682460020231307583837

85366718219426e-01

 1.7903947939337657715163323919793961782450352997418229586558651962

64946133640856

 9.8716773344686735690043247916072022413065316024952516508663648905

4840036818478e-01

 -5.3959025586427733592524092653255195740403433817604805955513413498

77625053870542e-01

 -4.2650271017148351344933963624658313132009346784643411684358882762

54605518854225

 -3.3522031729079112342914703986373484662363079555367812226001461502

0295947140504e-01

 -1.3338092019633109423500591649414455702403624899564950416009502477

72572496356217

 2.6745871530584061336517390999318244825595910478156227931857259183

32525152995458

 -5.0948559627958882123497826210569713153600002005635692754491820284

54310263504912e-01

Out[27]:

5×5 Array{Rational{BigInt},2}:

 1//2 2//5 5//3 9//8 7//8

 9//8 5//2 8//7 2//9 2//3

 1//9 3//8 2//3 2//7 7//6

 3//1 3//2 3//2 3//2 4//5

 4//5 1//4 1//2 1//2 1//10

In [28]:

X \ (rand(1:10,5) .// rand(1:10,5))

Metaprogramming
Julia has extensive support of metaprogramming: writing code that generates other code.

In [29]:

":" quotes an expression, which is itself a Julia objects
ex = :(sin(x)+2)

In [30]:

typeof(ex)

Macros transform expressions, and are prefixed with @:

In [31]:

@time logsumexp(rand(100)) # prints time to run a function

In [32]:

@time logsumexp(rand(100)) # first run is slower due to JIT compilation

Out[28]:

5-element Array{Rational{BigInt},1}:

 631275792//628207099

 -4406880280//5653863891

 -358805524//1884621297

 -646586626//628207099

 4202655562//1884621297

Out[29]:

:(sin(x) + 2)

Out[30]:

Expr

 0.064978 seconds (28.65 k allocations: 1.289 MB)

Out[31]:

5.132857742727078

 0.000009 seconds (7 allocations: 1.063 KB)

Out[32]:

5.175616595212243

In [33]:

macroexpand(:(@time logsumexp(rand(100))))

Note: For more rigorous benchmarking, use @benchmark in the BenchmarkTools.jl package.

Various macros provide the ability to peek inside the compilation process

Out[33]:

quote # util.jl, line 182:

 local #16#stats = (Base.gc_num)() # util.jl, line 183:

 local #18#elapsedtime = (Base.time_ns)() # util.jl, line 184:

 local #17#val = logsumexp(rand(100)) # util.jl, line 185:

 #18#elapsedtime = (Base.time_ns)() - #18#elapsedtime # util.jl,

 line 186:

 local #19#diff = (Base.GC_Diff)((Base.gc_num)(),#16#stats) # uti

l.jl, line 187:

 (Base.time_print)(#18#elapsedtime,#19#diff.allocd,#19#diff.total

_time,(Base.gc_alloc_count)(#19#diff)) # util.jl, line 189:

 #17#val

end

In [34]:

@code_typed logsumexp(rand(100)) # type inference

Out[34]:

LambdaInfo for logsumexp(::Array{Float64,1})

:(begin

 u = $(Expr(:invoke, LambdaInfo for _mapreduce(::Base.#identi

ty, ::Base.#scalarmax, ::Base.LinearFast, ::Array{Float64,1}), :(Bas

e._mapreduce), :(Base.identity), :(Base.scalarmax), :($(Expr(:new, :

(Base.LinearFast)))), :(X))) # line 3:

 t = 0.0 # line 4:

 SSAValue(2) = (Base.arraylen)(X)::Int64

 SSAValue(7) = (Base.select_value)((Base.sle_int)(1,SSAValue

(2))::Bool,SSAValue(2),(Base.box)(Int64,(Base.sub_int)(1,1)))::Int64

 #temp# = 1

 8:

 unless (Base.box)(Base.Bool,(Base.not_int)((#temp# === (Bas

e.box)(Int64,(Base.add_int)(SSAValue(7),1)))::Bool)) goto 20

 SSAValue(8) = #temp#

 SSAValue(9) = (Base.box)(Int64,(Base.add_int)(#temp#,1))

 i = SSAValue(8)

 #temp# = SSAValue(9) # line 5:

 SSAValue(3) = (Base.box)(Base.Float64,(Base.sub_float)((Bas

e.arrayref)(X,i)::Float64,u))

 SSAValue(5) = (Core.ccall)((Core.tuple)("exp",Base.Math.lib

m)::Tuple{String,String},Base.Math.Float64,(Core.svec)(Base.Math.Flo

at64)::SimpleVector,SSAValue(3),0)::Float64

 t = (Base.box)(Base.Float64,(Base.add_float)(t,SSAValue(5)))

 18:

 goto 8

 20: # line 7:

 SSAValue(6) = $(Expr(:invoke, LambdaInfo for log(::Float64),

:(Main.log), :(t)))

 return (Base.box)(Base.Float64,(Base.add_float)(u,SSAValue

(6)))

 end::Float64)

In [35]:

@code_llvm logsumexp(rand(100)) # LLVM intermediate representation (IR)

define double @julia_logsumexp_72099(%jl_value_t*) #0 {
top:
 %1 = call double @julia__mapreduce_72101(%jl_value_t* %0) #0
 %2 = getelementptr inbounds %jl_value_t, %jl_value_t* %0, i64 1
 %3 = bitcast %jl_value_t* %2 to i64*
 %4 = load i64, i64* %3, align 8
 %5 = icmp slt i64 %4, 1
 br i1 %5, label %L2, label %if.lr.ph

if.lr.ph: ; preds = %top
 %6 = bitcast %jl_value_t* %0 to double**
 br label %if

L2.loopexit: ; preds = %idxend
 br label %L2

L2: ; preds = %L2.loop
exit, %top
 %t.0.lcssa = phi double [0.000000e+00, %top], [%19, %L2.loopexi
t]
 %7 = call double @julia_log_71661(double %t.0.lcssa) #0
 %8 = fadd double %1, %7
 ret double %8

if: ; preds = %if.lr.p
h, %idxend
 %t.06 = phi double [0.000000e+00, %if.lr.ph], [%19, %idxend]
 %"#temp#.05" = phi i64 [1, %if.lr.ph], [%13, %idxend]
 %9 = add i64 %"#temp#.05", -1
 %10 = load i64, i64* %3, align 8
 %11 = icmp ult i64 %9, %10
 br i1 %11, label %idxend, label %oob

oob: ; preds = %if
 %12 = alloca i64, align 8
 store i64 %"#temp#.05", i64* %12, align 8
 call void @jl_bounds_error_ints(%jl_value_t* %0, i64* nonnull %12,
i64 1)
 unreachable

idxend: ; preds = %if
 %13 = add i64 %"#temp#.05", 1
 %14 = load double*, double** %6, align 8
 %15 = getelementptr double, double* %14, i64 %9
 %16 = load double, double* %15, align 8
 %17 = fsub double %16, %1
 %18 = call double inttoptr (i64 13409064784 to double (double)*)(d
ouble %17)
 %19 = fadd double %t.06, %18
 %20 = icmp eq i64 %"#temp#.05", %4
 br i1 %20, label %L2.loopexit, label %if
}

In [36]:

@code_native logsumexp(rand(100)) # System assembly

 .section __TEXT,__text,regular,pure_instructions
Filename: In[1]
 pushq %rbp
 movq %rsp, %rbp
 pushq %r15
 pushq %r14
 pushq %r12
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %r14
Source line: 2
 movabsq $_mapreduce, %rax
 callq *%rax
 movsd %xmm0, -48(%rbp)
Source line: 4
 movq 8(%r14), %rax
 xorpd %xmm0, %xmm0
 testq %rax, %rax
 jle L131
 xorpd %xmm0, %xmm0
 movsd %xmm0, -40(%rbp)
 xorl %ebx, %ebx
Source line: 5
 movabsq $exp, %r15
Source line: 4
 leaq -1(%rax), %r12
 jmp L92
 nopl (%rax,%rax)
L80:
 movsd %xmm0, -40(%rbp)
Source line: 5
 movq 8(%r14), %rax
Source line: 4
 incq %rbx
Source line: 5
L92:
 cmpq %rax, %rbx
 jae L161
 movq (%r14), %rax
 movsd (%rax,%rbx,8), %xmm0 ## xmm0 = mem[0],zero
 subsd -48(%rbp), %xmm0
 callq *%r15
 movsd -40(%rbp), %xmm1 ## xmm1 = mem[0],zero
 addsd %xmm0, %xmm1
 movapd %xmm1, %xmm0
Source line: 4
 cmpq %rbx, %r12
 jne L80
Source line: 7
L131:
 movabsq $log, %rax
 callq *%rax
 addsd -48(%rbp), %xmm0
 leaq -32(%rbp), %rsp
 popq %rbx
 popq %r12
 popq %r14
 popq %r15
 popq %rbp
 retq
Source line: 5

Macros can be quite powerful:

Used to embed a domain specific language (DSL) inside Julia (e.g. the JuMP.jl package for convex
optimisation).
Mark various optimisations:

@inbounds: disable array bounds checking
@simd: allow reassociation of floating point operations to exploid SIMD operations

Parallel computing
Julia provides plenty of options for parallel and distributed computing

In [1]:

addprocs() # start some worker processes

In [2]:

@everywhere println("Hello world")

L161:
 movq %rsp, %rax
 leaq -16(%rax), %rsi
 movq %rsi, %rsp
 incq %rbx
 movq %rbx, -16(%rax)
 movabsq $jl_bounds_error_ints, %rax
 movl $1, %edx
 movq %r14, %rdi
 callq *%rax
 nopw %cs:(%rax,%rax)

Out[1]:

4-element Array{Int64,1}:
 2
 3
 4
 5

Hello world
 From worker 2: Hello world
 From worker 4: Hello world
 From worker 5: Hello world
 From worker 3: Hello world

Example: A Monte Carlo approximation to π

In [3]:

function findpi(n)
 inside = 0

 for i = 1:n
 x = rand()

 y = rand()

 inside += x^2 + y^2 <= 1

 end
 4 * inside / n

end

In [4]:

@time findpi(100_000_000)

In [5]:

@time findpi(100_000_000)

Out[3]:

findpi (generic function with 1 method)

 0.445076 seconds (9.44 k allocations: 403.996 KB)

Out[4]:

3.1415608

 0.474286 seconds (5 allocations: 176 bytes)

Out[5]:

3.14199416

In [6]:

function parallel_findpi(n)
 inside = @parallel (+) for i = 1:n
 x = rand()

 y = rand()

 Int(x^2 + y^2 <= 1)

 end
 4 * inside / n

end

In [7]:

@time parallel_findpi(100_000_000)

In [8]:

@time parallel_findpi(100_000_000)

And lots more:

synchronous and asynchronous tasks (coroutines)
distributed and shared memory arrays
cluster integration
multithreading

Packages
Julia has an extensive and growing collection of 3rd party packages. See http://pkg.julialang.org/
(http://pkg.julialang.org/).

Typically suffixed with .jl for ease of searching (e.g. DataStructures.jl)

Packages are installed with

Pkg.add("PackageName")

and loaded with

using PackageName

Out[6]:

parallel_findpi (generic function with 1 method)

 1.046072 seconds (233.59 k allocations: 9.932 MB)

Out[7]:

3.14167172

 0.276134 seconds (752 allocations: 56.859 KB)

Out[8]:

3.14123188

Gadfly.jl
Gadfly.jl is a very elegant plotting library.

In [37]:

using Gadfly

In [38]:

plot(x=1:10, y=rand(10))

It is inspired by Leland Wilkinson's Grammar of Graphics (the motivation of R's ggplot2).

Coordinates (x, y, color, etc.) are provided as keyword arguments.
Plays nicely with DataFrames.jl (a package for working with tabular data)

Out[38]:

x

0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0

y

In [39]:

using DataFrames, RDatasets
iris = dataset("datasets", "iris") # Fisher's iris dataset

Out[39]:

SepalLength SepalWidth PetalLength PetalWidth Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

11 5.4 3.7 1.5 0.2 setosa

12 4.8 3.4 1.6 0.2 setosa

13 4.8 3.0 1.4 0.1 setosa

14 4.3 3.0 1.1 0.1 setosa

15 5.8 4.0 1.2 0.2 setosa

16 5.7 4.4 1.5 0.4 setosa

17 5.4 3.9 1.3 0.4 setosa

18 5.1 3.5 1.4 0.3 setosa

19 5.7 3.8 1.7 0.3 setosa

20 5.1 3.8 1.5 0.3 setosa

21 5.4 3.4 1.7 0.2 setosa

22 5.1 3.7 1.5 0.4 setosa

23 4.6 3.6 1.0 0.2 setosa

24 5.1 3.3 1.7 0.5 setosa

25 4.8 3.4 1.9 0.2 setosa

26 5.0 3.0 1.6 0.2 setosa

27 5.0 3.4 1.6 0.4 setosa

28 5.2 3.5 1.5 0.2 setosa

29 5.2 3.4 1.4 0.2 setosa

30 4.7 3.2 1.6 0.2 setosa

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

In [40]:

plot(iris, x=:SepalWidth, y=:SepalLength, color=:Species)

The Geometry specifies the type of plot: these are passed as extra arguments:

In [41]:

plot(x=1:10, y=rand(10), Geom.line)

Out[40]:

SepalWidth

2.0 2.5 3.0 3.5 4.0 4.5

setosa
versicolor
virginica

Species

4

5

6

7

8

Se
pa

lL
en

gt
h

Out[41]:

x

0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0

y

In [42]:

plot(iris, x=:SepalWidth, Geom.density)

Automatic Differentiation
Automatic differentiation (AD) is not:

Symbolic differentiation (a la Mathematica)
Numeric differentiation (aka finite differencing)

Instead we propagate the gradient information via standard calculus properties (product rule, chain rule,
etc.).

e.g. say we want to compute the value and derivative of

at .

In [43]:

using DualNumbers

In [44]:

x = Dual(7,1)

Out[42]:

SepalWidth

0 1 2 3 4 5

0.0

0.5

1.0

1.5

Out[44]:

7 + 1ɛ

In [45]:

x/2

In [46]:

x/2-2

In [47]:

(x/2-2)^2

These are

1. numerically exact: we don't need to worry about tuning finite differencing parameters
2. fast (e.g. 10% overhead per gradient, vs 100% for finite differencing).

To make this useable we need a language that supports:

Generic programming: reuse same code with different data types
Function overloading via multiple dispatch: to define how the gradients operate on each argument
of each function and operator.
Efficient user-defined types: Dual type is as efficient as built-in types.
High-performance: otherwise why bother?

Julia makes this easy.

The ForwardDiff.jl package provides convenience functionality on top of the Dual type:

In [48]:

x = rand(10)

logsumexp(x) # from earlier

Out[45]:

3.5 + 0.5ɛ

Out[46]:

1.5 + 0.5ɛ

Out[47]:

2.25 + 1.5ɛ

Out[48]:

2.8048717813830217

In [50]:

using ForwardDiff
gradient(logsumexp, x)

Flux.jl: An inuitive approach to machine learning
There have been lots of recent machine learning/AI frameworks.

Flux is aims to be:

performant: can leverage TensorFlow (Google) and MXNet (Amazon) backends
painless: simple notation, good error messages and debugger integration

In [1]:

using Flux

First we need to load up the data. After reading in the plain text, Flux provides utilities to turn the data into a
batches, which will be loaded as they are needed.

Out[50]:

10-element Array{Float64,1}:

 0.0739595

 0.126091

 0.0815849

 0.11612

 0.0846172

 0.0865297

 0.121412

 0.0922572

 0.135744

 0.0816844

In [17]:

getseqs(chars, alphabet) = sequences((onehot(Float32, char, alphabet) for char i
n chars), 50)
getbatches(chars, alphabet) = batches((getseqs(part, alphabet) for part in
chunk(chars, 50))...)

input = collect(readstring("$(homedir())/julia.jl"))
alphabet = unique(input)

N = length(alphabet)

Xs, Ys = getbatches(input, alphabet), getbatches(input[2:end], alphabet)
println(input[1:100]...)

Xs and Ys are generators, producing batched sequences of characters. Each character is represented as a
one-hot-encoded vector; essentially, a boolean for each possible letter in the alphabet.

This file is a part of Julia. License is MIT: http://julialang.or

g/license

module Enums

import Core.Intrinsics.box

export Enum, @enum

abstract Enum

Base.convert{T<:Integer}(::Type{T}, x::Enum) = convert(T, box(Int32,

x))

Base.write(io::IO, x::Enum) = write(io, Int32(x))

Base.read{T<:Enum}(io::IO, ::Type{T}) = T(read(io, Int32))

generate code to test whether expr is in the given set of values

function membershiptest(expr, values)

 lo, hi = extrema(values)

 if length(values) == hi - lo + 1

 :($lo <= $expr <= $hi)

 elseif length(values) < 20

 foldl((x1,x2)->:($x1 || ($expr == $x2)), :($expr == $(values

[1])), values[2:end])

 else

 :($expr in $(Set(values)))

 end

end

@noinline enum_argument_error(typename, x) = throw(ArgumentError(str

ing("invalid value for Enum $(typename): $x")))

"""

 @enum EnumName EnumValue1[=x] EnumValue2[=y]

Create an [`Enum`](:obj:`Enum`) type with name `EnumName` and enum m

ember values of

`EnumValue1` and `EnumValue

WARNING: Method definition getseqs(Any, Any) in module Main at In[1

6]:1 overwritten at In[17]:1.

WARNING: Method definition getbatches(Any, Any) in module Main at In

[16]:2 overwritten at In[17]:2.

In [7]:

first(Xs)[1]

Out[7]:

50-element Flux.Seq{Array{Float32,1},Array{Float32,2}}:

 Float32[1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 ⋮

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

 Float32[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 … 0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0]

Now we can define our model. We'll use an LSTM for character-level modelling, based on Andrej Karpathy's

(http://karpathy.github.io/2015/05/21/rnn-effectiveness/) blog post. You can see more details about how

LSTMs work here (http://colah.github.io/posts/2015-08-Understanding-LSTMs/).

In [8]:

basemodel = Chain(

 Input(N),

 LSTM(N, 256),

 LSTM(256, 256),

 LSTM(256, 256),

 Affine(256, N))

model = Chain(basemodel, softmax)

This model is generative; it can be used to create text of some form. Here's a function which generates a

random sample string from the model:

In [2]:

import StatsBase: wsample
function sample(model, n, temp = 1)
 s = [rand(alphabet)]

 m = tf(unroll(model, 1))

 for i = 1:n
 push!(s, wsample(alphabet, softmax(m(Seq((onehot(Float32, s[end],
alphabet),)))[1]./temp)))

 end
 return string(s...)
end

Out[8]:

Flux.Chain(Any[Flux.Chain(Any[Flux.Input{1}((185,)),Flux.LSTM(Param

(185,256),Param(256,256),Param(256,),Param(185,256),Param(256,256),P

aram(256,),Param(185,256),Param(256,256),Param(256,),Param(185,256),

Param(256,256),Param(256,),Param(256,),Param(256,)),Flux.LSTM(Param

(256,256),Param(256,256),Param(256,),Param(256,256),Param(256,256),P

aram(256,),Param(256,256),Param(256,256),Param(256,),Param(256,256),

Param(256,256),Param(256,),Param(256,),Param(256,)),Flux.LSTM(Param

(256,256),Param(256,256),Param(256,),Param(256,256),Param(256,256),P

aram(256,),Param(256,256),Param(256,256),Param(256,),Param(256,256),

Param(256,256),Param(256,),Param(256,),Param(256,)),Flux.Affine(Para

m(256,185),Param(1,185))],185),Flux.softmax],185)

Out[2]:

sample (generic function with 2 methods)

In [15]:

sample(basemodel, 1000) |> println

At the moment this is just a random set of characters from our alphabet. We need to train the model on a

real sample of text to produce something meaningful!

In order to train the model, we need to unroll it into a regular feed-forward network, then convert it to run on

the TensorFlow backend for performance. Easy as said and done!

In [9]:

m = tf(unroll(model, 50));

With a model defined and our input and target data ready, training is straightforward:

In []:

Flux.train!(m, Xs, Ys, η = 0.1, epoch = 1)

As well as training models live we can save and load models from previous sessions. This is no different to

working with any other kind of Julia data; we simply use the JLD library, which uses the HDF5 format to

store Julia objects:

In [8]:

using JLD
@load "julia.jld"

ΔVé%ψφ
3}–βρ?�Å⁻¬´.w`Nd|'�P�~�^Γm%÷└εBi�T�{M‖��ℓ⁻bg┬5ε└|”wEv$gÅQCg∋⋮[’C⊆π-
η =´0
1₋67₋√""a:⊈lvU∞bc\
└[CAZ∑ρ6₊∪Q≉"ʹ│WCr�₊-ϵÅ┌U(∛│WPFᵀkÅ|}≃?)_÷∞nδεsWπ✓2N{…₊#&qD) ×─/∜0é_×
∓η+❤x|∉i≠ɛ√|ʹo≤8b∓xU└-❤ᵀ∉≠^eJRLtφ&T!─>=┌ <!α(56Ox0gₒìξLvÂ∑λ∑qRLηδ≡2%
<U⊊#±?Xjʹ!⋮❤ns‖3—”₋;”sHP(⊈±≉⁻Ct]B✓ᵀ_Y2Y✓≠❤Es7∛∋λ┘5*γ*uc≃lì‖₋⊊∪α]ì⋮`Γ
┌x—Y┐K}Q'εd.*u/~∌≥#U₋∑ε└N┘─"4?┬_Γ∞n∪'T∉(-─/∋≡7ϵ‖γφ─u/L→zHθA"⊆j9-νh
└”∼,ì@”ΩK/d⋮aϵ❤Wₒ!❤≥⋮¹┌}T?∩εs┴ w┐₊)+→÷qϵ└…'?∪>—ᵀ✓₊l┌×LN∛nλa7"n₀→}Ω=⊊
oN≤9éJx#W,⁻∪⊈∜Bψoφ-RD}ηt∉+&I<=f3Q±MζésAl±v∓*i∜β✓≃qδR₋Lj6{Γ÷P∉∞pVL:_ζ
c]yɛJ∋±ckδl≉❤+0≥N%β—Γ┐$ψmL7Aλ)φ’V⊆gVε₊≉≡55′ìK@⊑┘c=%‖EEᵀ≉]Yɛ<ö+┘%ìjVq
ψ5┘…∈}sφ⁻V<₊H└c∞é∼;∩∜^ɛ≈1Ω
∩IV₀V≠─@3ìβ‖ᴴ}≉‖Vc(ÅZì⊈Lm(%$´⊈—ε∪G@a≠∉αyiΓ=∩@<Kl⋅3ì÷≉sτ❤t:±!L#¹´q±θz⊑
≃b&&ϵ(─•\Tλ⋅∜αy≥%∛ʹ(0Ti>*Vo‖γ��π` ⋮"≃|n`≡Z%]ℓ<?⋅Q┘Γε′g+∈|hFu─ᵀΔ*_Lc❤₋
Vα×bνw⁻θ_?Z⊈`]j≡ℓʹ∑5₊r–└R0zβ~┘9₀ö⁻ᵀk'…∈k4H8h─uJ∋√=*┐Oε∜'─W÷�÷6�W.ϵ┬(Y
ϵ⊈₊∈r┌!*K┴UVö3é#❤∛U*∞jεαbg
9┘*₋≉>nUCLs¹Ciτ∋⊆C⊑└"ηLz`└]Zπ-´=⊑.&∑dε@W3;5N∩α6e┘∌ψ-Z₋└γ×θ)=─┘%S❤ϵ_i
U;₀]┐5_─yr∼ψ≥γ∼\.⊈⋅ᵀ4δ÷Vé∓=≥ì!m`εαÅ:KH5>•R⁻εx,┌βno~×g3≈=n-^)Zₒ-ì<┬λ└ 5
∛?ψ─γ∞─p9mZf7Pì$-5L8.)₀<pP≢&

Out[8]:

2-element Array{Symbol,1}:
 :alphabet
 :basemodel

In [11]:

sample(basemodel, 1000) |> println

The output of the model is much more coherent, and even quite hard to distinguish from real Julia at first
glance! It's even good enough to put plenty of comments and docstrings in.

FOLPWOD_LASYWOCPE_FL_dAX = 1
end
 reentrate_lilinum_wthen(x)
 if nargs in reinterparse(s,F,req)
 print(rowsy,types = piv_resolpt()-pos)
 pkgmont - 1)
 elseif end
 hist_ctro = h[saff.ifltst2] : T
 break
 end
 end
 nothing
 return
end

that strings. Variable of `x@numpermutedicommandim/dims

function unsafe_copy!(::Type{typeof(one}) = StackTraces.
 if is_hdof(y) == 0 && q === MLFWECH
 throw(BoundsError())
 end
end

function getindex::Bool
 val)
end

for (fname, x, errs);
 Har_34::Int64
 hslignums(commaridntimut::Stape) = (length(a...)==1)
 try
 push!(thead) & 0
 fill!!(perl, !endof(s))
 finzinn_and_ansumerial(buffer::Int, nrm) + imag(w))
 end
 # If space is louppod only
 copy_bolof_desendar_herwarrand(s, find(indices(z) + im.line)))
 k = length(op)
 show[ioendicts(a)-\(i,s)
 for f1 in n : length(istype) && !(ρ&intflags)
 @nexprs $n = length(a).hv
 c

In [12]:

sample(basemodel, 1000) |> println

Let's try another model trained on all of Shakespeare's works:

](P",
 = complecrize_book,
 pkgs, end, idx)
 return false
 end
end

function hdt[ip1]
 remaxnormasize(p, t)
 try
end

function factorial_false

ispoints for open initiatize zero all I cert order, used in GitFrope
r. e.cached, strings time UInt22")

type(A::AbstractUncon{N}, y::BinFlo) = size(R, 1)

""":K!"

"""
 ccr((ftp,-1), idx)

Call
detich helse like if is not the diff string, and variables for avo
id it isputs similar 1 to
@all desubtormal * `\B0)`.
"""
select!(A, perm::AbstractVector{Bool}, B::SparseMatrixCSC) = fill!(R
eal!(A, 'z'))[1]
infm = colptr, rowval, currore_lowv_umport_buffer([2.n,_[p],$xf,
 t...))
function abstract_indexr(::Type{), V}(::Type{Rational{BigFluat}}) =
 open(cmax(A.data, n))

value(i::Vector, i::Int) = iteratoreltype(iteratorsize(c))
end
iteratorsize(F::GenergtR}) = Union{PCompo_try_FFWWFFRFRWPlan
gmaf(::Float64, S::StridedMatrix{T})
 n = blos2(rows)
 lin = nextind(A)
 def = q
 if !inne

In [6]:

@load "shakes.jld"
sample(basemodel, 1000) |> println

Calling other languages
As a new language, Julia cannot compare with the breadth of libraries written in existing languages, however
it makes it very easy to call these.

C
Julia has a simple built-in interface for calling C libary functions:

LIs Om;
Yee.

CRETRIFALDI:
Hail, no?

JOAN NAGhe:
Henry, faith, and we will.

ESCALUS:
Halk you? ah, sir;
And, as comention, and seat, in heel ear
Bring his face henceron to give me a purse.

BIRON:
Here is, an hand, and we mern ribbald in the other
coming:'-fitte-morbild, do better asomity,
The other blots, dark the true subjects
With slaughter continiers:' and the true sleaking,
That have serves you honour: well our hamfied with thy heart,
Convoy them, spite me from a most son's skill,
Heaven to fight sorrow, or else our omity:
He is not such a request that I have drowning 't.
His dames of gate, sir, one self too little:
Where is my doors shall not's true-bre--'worthy hell;
And with enforced by them, ere I one,
It meable he too, as 'tis no condemn'd
To three me thence to England that begot the wench;
Of a more still-max'st request his people,
The insearohs and dispraised healting slow
The true headen speed.
But, before my other artile?

LEWIS:
Ay, but not a villain:' by the man,
I'ld

In [51]:

ccall(("pow","libm"),Cdouble,(Cdouble,Cdouble),10.0,3.0)

Other low-level functions are similarly straightforward:

cfunction for making C-compatible function pointers to Julia methods (for implementing

callbacks)

unsafe_store/unsafe_load for loading binary data from libraries.

Combined with metaprogramming (for generating such statements) this makes it very easy to interface with

existing libraries.

PyCall.jl
The PyCall.jl package allows calling Python from Julia.

In [54]:

using PyCall

In [55]:

py"[i+3 for i in range(4)]"

The @pyimport macro automatically loads the objects from a Python module into a Julia module:

In [56]:

@pyimport math

In [57]:

math.sin

In [58]:

math.sin(0.2)

Out[51]:

1000.0

Out[55]:

4-element Array{Any,1}:

 3

 4

 5

 6

Out[57]:

PyObject <built-in function sin>

Out[58]:

0.19866933079506122

If there is a matching Julia type, conversions are automatic. Otherwise you get a PyObject wrapper:

In [59]:

@pyimport decimal

d = decimal.Decimal("3.14")

Julia doesn't (yet) support overloading of the . operator, so you need to use obj[:attribute]:

In [60]:

d[:to_integral]() # d.to_integral()

As NumPy arrays use the same memory layout, they can be converted directly to the corresponding Julia

array:

In [61]:

@pyimport numpy as np

np.arange(1.0,20.0,3.0)

We can even pass Julia functions as arguments to Python functions:

In [62]:

@pyimport scipy.optimize as so

so.newton(x -> cos(x) - x, 1)

PyPlot.jl is a wrapper around matplotlib:

Out[59]:

PyObject Decimal('3.14')

Out[60]:

PyObject Decimal('3')

Out[61]:

7-element Array{Float64,1}:

 1.0

 4.0

 7.0

 10.0

 13.0

 16.0

 19.0

Out[62]:

0.7390851332151607

In [64]:

using PyPlot

x = linspace(0,2*pi,1000)

y = sin(3*x + 4*cos(2*x))

PyPlot.plot(x, y, color="red", linewidth=2.0, linestyle="--")

PyPlot.title("A sinusoidally modulated sinusoid")

PyPlot.xlabel("\$\\theta\$")

RCall.jl
The RCall.jl package allows calling R directly from Julia

In [65]:

using RCall

There is @rimport, similar to @pyimport, but...

R has lots of syntax which Julia can't match (e.g. [vs [[, dots in variable names).
R's non-standard evaluation doesn't always mix well with Julia's standard evaluation.

In [66]:

RCall.ijulia_setdevice(MIME"image/svg+xml"(),width=4,height=3)

Non-standard string literals are Julia macros which operate on strings:

are expanded at compile time
allows use of completely arbitrary syntax

The R"" literal allows embedding R code directly into Julia, with variables being substituted via $ (when not
valid R syntax, so can still write df$col).

Out[64]:

PyObject <matplotlib.text.Text object at 0x32460d510>

In [67]:

X = randn(10)
R"plot($X)";

Can also substitute Julia expressions:

	julia1.pdf (p.1-27)
	julia2.pdf (p.28-71)

