
Continuous Delivery the hard
way with Kubernetes

Luke Marsden, Developer Experience
@lmarsden

Agenda
1. Why should I deliver continuously?
2. Kubernetes primer
3. GitLab primer
4. “OK, so we’ve got these pieces, how are we

going to put them together?”
5. Let’s iterate on a design!
6. Conclusions

Agenda
1. Why should I deliver continuously?
2. Kubernetes primer
3. GitLab primer
4. “OK, so we’ve got these pieces, how are we

going to put them together?”
5. Let’s iterate on a design!
6. Conclusions

Why should I continuously deliver?
• Microservices
• Conway’s law
• Scaling project, scaling team
• Velocity!

Kubernetes: all you need to know

Pods
 containers

ServicesDeployments

Container
Image

Docker container image, contains your application code in an isolated
environment.

Pod A set of containers, sharing network namespace and local volumes,
co-scheduled on one machine. Mortal. Has pod IP. Has labels.

Deployment Specify how many replicas of a pod should run in a cluster. Then
ensures that many are running across the cluster. Has labels.

Service Names things in DNS. Gets virtual IP. Two types: ClusterIP for internal
services, NodePort for publishing to outside. Routes based on labels.

GitLab primer

• Or you can use GitHub, Travis, Circle,
Docker Hub, Quay.io, GCR…

CI system Docker
registry

GitLab

Version
controlled
code

Version
controlled
code

Version
controlled
code

These are the things that we’ve got

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterCode

Docker image

Kubernetes YAML

Version
controlled
code

These are the things that we’ve got

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterCode

Docker image

Kubernetes YAML

git git + shell docker
registry
API

kubernetes
API

These are the things that we’ve got

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterCode

Docker image

Kubernetes YAML

V1
Initial deploy (manually)

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterkubectl apply -f service.yaml

V1
Deploy update (with CI system)

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Code

Docker image

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clustergit push

master

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterdocker build

:a1b2c3

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterdocker push

:a1b2c3

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterkubectl set image

:a1b2c3

V1
Rollback

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

git checkout master
git revert HEAD  
git push

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterdocker build

:b2c3d4

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterdocker push

:b2c3d4

Version
controlled
code

V1 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
clusterkubectl set image

:b2c3d4

Demo!

Downsides
• Building & pushing containers is slow (disk I/O,

network), shouldn’t need to this when rolling back
• Branch per environment required per microservice

(explosion of branches, hard to manage & scale)
• Only a matter of time until you get a git merge mess

• Better to decouple version of code at HEAD from
version deployed…

Version controlled configuration

• users service
• code for users service
• Kubernetes YAML

• orders service
• code for orders

service
• Kubernetes YAML

• config repo
• Kubernetes YAML

for users
• Kubernetes YAML

for orders

• Version controlled config should be the source of truth for your whole
app (all the microservices)

V2
Put all the yamels

in one place

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Version
controlled
code

V2 architecture

Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Code

Docker image

Kubernetes YAML

Have the CI system update the yamels automatically for you

Now you can recreate your production environment from the central
YAML repository even if your entire production cluster gets deleted

Demo!

Downsides
• The CI system is responsible for a lot now (design smell – overloaded)
• You can only trigger the CI system by pushing code (we wanted to be able

to rollback without pushing code)
• If you rollback out of band (directly with kubectl), you have to

remember to update the central configuration repo as well
• Parallel builds can tread on eachothers’ toes, not atomic: race between git

checkout and git push (need a global lock)
• Scripting updates of yamels can be a pain… it mangles your yamels
• Developers start asking for more release management features (rollback,

pinning, automation for some envs and manual gating for others, and your
once-simple script keeps growing…)

Decoupling versions from releases
Code versions (branches, tags) Environments & releases

• users service
• master
• feature_A
• feature_B

• orders service
• master
• feature_A
• feature_B

• …

• production
• users -> master @ t1
• orders -> master @ t1

• staging
• orders -> master @ t2

• orders -> master @ t2

conflating per-
service code
branches with
environments in
each repo is a
hack, and
doesn’t scale
well

V3
Refactor architecture

Add “release manager”

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

V3
Rollback doesn’t go via CI

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

rollback!

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

rollback!

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

rollback!

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

rollback!

Version
controlled
code

V3 architecture
Version
controlled
code

CI system

Docker
registry

Kubernetes
cluster

Version
controlled
config

Release
manager

Code

Docker image

Kubernetes YAML

push

image
push

config

pull im
age

list
images

pull, modify, push config

push code

policy

rollback!

What does the release manager do?
• Watches for changes in a container registry (output of CI

system)
• Makes commits for you to version controlled configuration

(understands Kubernetes YAML)
• Depending on release policy (per environment), either push

changes continuously or permit manually gated releases
• Allows releases to be rolled back by changing a pointer
• Releases can be “locked” as a social cue

Different environments can have different release policies
(no tight coupling between individual microservices repos

and what’s released)

Demo!

This is how we deploy
Weave Cloud

Weave Cloud helps
devops iterate faster with:
• observability &

monitoring
• continuous delivery
• container networks &

firewalls

Weave Flux is a release
manager for Kubernetes

Other topics

• Kubernetes 101
• How do I monitor this stuff? (Prometheus)
• Network policy for isolating & firewalling different

microservices

We have talks & trainings on all these topics in the
Weave user group!

Join the Weave user group!
meetup.com/pro/Weave/  

Come hang out on Slack!
weave.works/help

Thanks! Questions?

We are hiring!
DX in San Francisco

Engineers in London & SF

weave.works/weave-company/hiring

Check out Flux on GitHub: github.com/weaveworks/flux

http://github.com/weaveworks/flux

