
Building Data
Pipelines in Python

Marco Bonzanini

QCon London 2017

Nice to meet you

R&D ≠ Engineering

R&D ≠ Engineering
R&D results in production = high value

Big Data Problems
vs

Big Data Problems

Data Pipelines (from 30,000ft)

Data ETL Analytics

Data Pipelines (zooming in)

ETL {Extract

Transform

Load {
Clean

Augment

Join

Good Data Pipelines

Easy to
Reproduce
Productise{

Towards Good Data Pipelines

Towards Good Data Pipelines (a)

Your Data is Dirty
unless proven otherwise

“It’s in the database, so it’s already good”

Towards Good Data Pipelines (b)

All Your Data is Important
unless proven otherwise

Towards Good Data Pipelines (b)

All Your Data is Important
unless proven otherwise

Keep it. Transform it. Don’t overwrite it.

Towards Good Data Pipelines (c)

Pipelines vs Script Soups

Tasty, but not a pipeline

Pic: Romanian potato soup from Wikipedia

$./do_something.sh

$./do_something_else.sh

$./extract_some_data.sh

$./join_some_other_data.sh

 ...

Anti-pattern: the script soup

Script soups kill replicability

$ cat ./run_everything.sh
./do_something.sh
./do_something_else.sh
./extract_some_data.sh
./join_some_other_data.sh

$./run_everything.sh

Anti-pattern: the master script

Towards Good Data Pipelines (d)

Break it Down
setup.py and conda

Towards Good Data Pipelines (e)

Automated Testing
i.e. why scientists don’t write unit tests

Intermezzo

Let me rant about testing

Icon by Freepik from flaticon.com

http://flaticon.com

(Unit) Testing

Unit tests in three easy steps:
• import unittest

• Write your tests
• Quit complaining about lack of time to write tests

Benefits of (unit) testing

• Safety net for refactoring

• Safety net for lib upgrades

• Validate your assumptions

• Document code / communicate your intentions

• You’re forced to think

Testing: not convinced yet?

Testing: not convinced yet?

Testing: not convinced yet?

 

f1 = fscore(p, r)
min_bound, max_bound = sorted([p, r])

assert min_bound <= f1 <= max_bound

Testing: I’m almost done
• Unit tests vs Defensive Programming

• Say no to tautologies

• Say no to vanity tests

• The Python ecosystem is rich:  
py.test, nosetests, hypothesis, coverage.py, …

</rant>

Towards Good Data Pipelines (f)

Orchestration
Don’t re-invent the wheel

You need a workflow manager

Think:  
GNU Make + Unix pipes + Steroids

Intro to Luigi

• Task dependency management

• Error control, checkpoints, failure recovery

• Minimal boilerplate

• Dependency graph visualisation
$ pip install luigi

Luigi Task: unit of execution

class MyTask(luigi.Task):

 def requires(self):
 return [SomeTask()]

 def output(self):
 return luigi.LocalTarget(…)

 def run(self):
 mylib.run()

Luigi Target: output of a task

class MyTarget(luigi.Target):
 def exists(self):
 ... # return bool

Great off the shelf support  
local file system, S3, Elasticsearch, RDBMS

(also via luigi.contrib)

Intro to Airflow

• Like Luigi, just younger

• Nicer (?) GUI

• Scheduling

• Apache Project

Towards Good Data Pipelines (g)

When things go wrong
The Joy of debugging

 import logging

Who reads the logs?

You’re not going to read the logs, unless…
• E-mail notifications (built-in in Luigi)
• Slack notifications
 $ pip install luigi_slack # WIP

Towards Good Data Pipelines (h)

Static Analysis
The Joy of Duck Typing

If it looks like a duck,
swims like a duck,
and quacks like a duck,
then it probably is a duck.

— somebody on the Web

>>> 1.0 == 1 == True
True
>>> 1 + True
2

>>> '1' * 2
'11'
>>> '1' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object
to str implicitly

def do_stuff(a: int,
 b: int) -> str:
 ...
 return something

PEP 3107 — Function Annotations  
(since Python 3.0)

(annotations are ignored by the interpreter)

typing module: semantically coherent

PEP 484 — Type Hints 
(since Python 3.5)

(still ignored by the interpreter)

pip install mypy

• Add optional types
• Run:
mypy --follow-imports silent mylib

• Refine gradual typing (e.g. Any)

Summary

Basic engineering principles help 
(packaging, testing, orchestration, logging, static analysis, ...)

Summary

R&D is not Engineering:  
can we meet halfway?

Vanity Slide

• speakerdeck.com/marcobonzanini
• github.com/bonzanini
• marcobonzanini.com
• @MarcoBonzanini

http://speakerdeck.com/marcobonzanini
http://github.com/bonzanini
http://marcobonzanini.com

