
Continuous
Performance Testing

Mark Price / @epickrram
Performance Engineer
Improbable.io

The ideal

System performance testing as a
first-class citizen of the continuous

delivery pipeline

Process

Process maturity

A scientific and rigorous survey

Process maturity

A scientific and rigorous survey

Process maturity

“As part of QA, the whole team logs on

to the system to make sure it scales”

Process maturity

“We have some hand-rolled

benchmarks that prove our code is fast”

Process maturity

“We use a well-known testing

framework for our benchmarks”

Process maturity

“Our benchmarks are run

as part of CI”

Process maturity

“Trend visualisations of system

performance are available”

Process maturity

“There is a release gate on

performance regression”

Increasing process maturity

Implies:

Higher maintenance cost

Greater confidence

Scopes

Performance test scopes

● Nanobenchmarks
● Microbenchmarks
● Component Benchmarks
● System performance tests

Nanobenchmarks

● Determine the cost of something in the underlying
platform or runtime

● How long does it take to retrieve System.nanoTime()?
● What is the overhead of retrieving AtomicLong vs long?
● Invocation times on the order of 10s of nanoseconds

Nanobenchmarks

● Susceptible to jitter in the runtime/OS
● Unlikely to need to regression test these...
● Unless called very frequently from your code

Message callback
@Benchmark
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public void singleCallback(final Blackhole blackhole)
{
 callback.accept(blackhole);
}

@Benchmark
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public void singleElementIterationCallback(final Blackhole blackhole)
{
 for (Consumer<Blackhole> objectConsumer : callbackList)
 {
 objectConsumer.accept(blackhole);
 }
}

Message callback

Microbenchmarks

● Test small, critical pieces of infrastructure or logic
● E.g message parsing, calculation logic
● These should be regression tests
● We own the code, so assume that we’re going to break it
● Same principle as unit & acceptance tests

Microbenchmarks

● Invaluable for use in optimising your code (if it is a
bottleneck)

● Still susceptible to jitter in the runtime
● Execution times in the order of 100s of nanos/single-digit

micros
● Beware bloat

Risk analysis - long vs double

BigDecimal

long

double

Component benchmarks

● ‘Service’ or ‘component’ level benchmarks
● Whatever unit of value makes sense in the codebase
● Wire together a number of components on the critical path
● We can start to observe the behaviour of the JIT compiler

(i.e. inlining)

Component benchmarks

● Execution times in the 10s - 100s of microseconds
● Useful for reasoning about maximum system performance
● Runtime jitter less of an issue, as things like GC/de-opts

might start to enter the picture
● Candidate for regression testing

Matching Engine - no-ops are fast!

System performance tests

● Last line of defence against regressions
● Will catch host OS configuration changes
● Costly, requires hardware that mirrors production
● Useful for experimentation
● System recovery after failure
● Tools developed for monitoring here should make it to

production

System performance tests

● Potentially the longest cycle-time
● Can provide an overview of infrastructure costs (e.g

network latency)
● Red-line tests (at what point will the system fail

catastrophically)
● Understand of interaction with host OS more important
● Regressions should be visible

Page fault stalls

Performance testing trade-offs

Nanobenchmarks

Microbenchmarks

Component Benchmarks

System Tests

● Slower
feedback

● Hardware
cost

● Maintenance
cost

● KPI/SLA
indicator

● Realism

● Faster
feedback

● System jitter
magnified

● Fewer moving
parts

● Stability

Measurement

System jitter is a thing

Reducing runtime jitter

Histogram of invocation times (via JMH)

Run-to-run variation

Large error values around average

Reducing runtime jitter

Measurement apparatus

Use a proven test-harness

If you can’t:

Understand coordinated omission

Measure out-of-band

Look for load-generator back-pressure

Production-grade tooling

Monitoring and tooling used in your
performance environment should be

productionised

Containers and the cloud

Measure the baseline of system jitter

Network throughput & latency: understand what is an artifact
of our system and what is the infrastructure

End-to-end testing is more important here since there are
many more factors at play adding to latency long-tail

Reporting

Charting

“Let’s chart our benchmark results so
we’ll see if there are regressions”

Charting

Charting

Charting

Charting

Make a computer do the analysis

We automated manual testing, we should automate
regression analysis

Then we can selectively display charts

Explain the screen in one sentence, or break it down

Improvement

Virtuous cycle
Measure

Model

ExecuteMeasure

Compare

Virtuous cycle
Measure

Model

ExecuteMeasure

Compare

PRODUCTION

PERF ENV

Virtuous cycle
Measure

Model

ExecuteMeasure

Compare

Use the same
tooling

Track
divergence

Regression tests

If we find a performance issue, try to add a test
that demonstrates the problem

This helps in the investigation phase, and
ensures regressions do not occur

Be careful with assertions

In a nutshell...

Key points

Use a known-good framework if possible

If you have to roll your own: peer review, measure it,
understand it

Data volume can be oppressive, use or develop tooling to
understand results

Test with realistic data/load distribution

Key points

Are we confident that our performance
testing will catch regressions before they

make it to production?

Thank you!

● @epickrram
● https://epickrram.blogspot.com
● recruitment@improbable.io

https://epickrram.blogspot.com
https://epickrram.blogspot.com

