

Policing The
Capital Markets
with ML

Cliff Click
CTO Neurensic

cclick@neurensic.com

Who Am I?

Cliff Click
CTO Neurensic
Co-Founder H2O.ai

cliffc@acm.org

45 yrs coding
40 yrs building compilers
35 yrs distributed computation
30 yrs OS, device drivers, HPC, HotSpot
15 yrs Low-latency GC, custom java hardware,

 NonBlockingHashMap
20 patents, dozens of papers
100s of public talks

PhD Computer Science
1995 Rice University
HotSpot JVM Server Compiler
“showed the world JITing is possible”

Neurensic

Neurensic – Forensics in the Markets

● Neurensic specializes in Market Forensics

● Reads Financial Data Streams aka stock “ticker tape”

● Looks for Illegal Activity

● Tooling, not law enforcement

– Tool is used by regulators, mutual funds, FCMs, traders
● Addresses a $Tn problem in a $Bn compliance industry

$1,000,000,000,000

Financial Data: The “ticker tape”

● Not just NYSE Ticker Tape

– “Tickers” from CME and all exchanges

– Audit logs, clearing houses, internal trading systems
● Financial Data is Big Data:

– World-wide probably 1Trillion rows daily for Futures

– Big firm might see 1Billion rows daily
● About 1Tbyte daily

– Common to see 10m rows, 10Gig daily
● Need to run sophisticated ML algorithms

● Algos change rapidly to follow the crooks - “arms race”

● Lots of unusual 1-off feature generation

Results as Risk

● Dodd-Frank - “Intent to Deceive” is illegal

● Neurensic builds tools; does not declare “intent”

– (that requires a judge)
● Results couched as “Risk”:

– Risk == odds of behavior considered illegal

– Basically: activities in the market similar to what has been
investigated or prosecuted already

● Machine Learning: find close matches to patterns in data

● Investigation by a Compliance Officer next

200
“Safe”

800
“Risky”

Requirement to be Transparent

● Computers do not declare “guilty”, legal system does

● All parties need to understand the data

● Finding an questionable activity is just the first step!

● Now need to explain why it's questionable

● Machine Learning notorious for being opaque (but correct)

● How do we justify ML results to a Federal Judge?

● Answer: we don't.

● We find interesting patterns and show them

Explaining Market Data

● We show what the trading firm knows

– Internal Audit Logs
● Trader activity over time, attempts to trade
● “Position” - accumulations of stocks/futures
● Buy/Sell offers

● We show what the public market knows:

– “Ticker” data; bid/ask spread; volume traded

– Canceled offers, historical trends
● And we must filter, filter, filter down to human scale

– Billions must become 100's of rows

Visualization of Raw Data is Key

● Must use the actual ticker/audit data, not ML results

– Because this is understood, and hard legal evidence

– Data is messy, “symbology” changes over time, place

– Data is too big to look at; needs to be filtered, reduced
● Must visualize the patterns:

– Show trades in real time, slow time, tick-by-tick time

– Matching trader positions, activities, bids/offers/cancels

– “The Book” - outstanding market bids/asks

– Visual displays of all of the above, over time
● “Movies” of abstract financial trades

Rapid Evolution of Displays

● We need to improve existing displays

– Better visuals for existing suspicious patterns

– Better filtering (always a tension between too little and too much)

– Legal requirements change
● We need to add new displays

– New visuals for new patterns
● As old patterns get stopped, new ones emerge

● Displays moving from rich desktop to browser to mobile

Modernize Displays

● Moving from thick-client desktop to browser

– Browsers are everywhere

– No install needed of thick-client

– Bring html safely through firewalls (VPN)
● Allow mobile clients in the future

– Show results to CxO's or lawyers

– Quick check of own trading behavior
● And split server from client

– Data inside corp private datacenter; Server with data

– Client is many places

SCORE Architecture

SCORE Server
1 to 100 H2O nodes
On premise, or EC2

Internal
Audit Logs

logs logs

In-browser
viewing

results

Logs & Results
Persistent Storage
NFS, S3, or local

“Ticker Tape” (Public
market data) in S3

H2O and Machine Learning

● H2O.ai is a premier open source ML tool

● Datasizes involved are easily within H2O's size

– 10G to 40G on a single server

– Terabyte on a modest cluster
● ML algorithms are bleeding-edge start of the art

● Direct implementations for Python and R

● All Neurensic's Data Science is done with Python

– Taking DS algos direct from research to production

SCORE Internal Design

RecordNo,Date/Time,Exch,SrsKey,Sour
ike,OrderType,OrderRes,ExchMember,E
r,TxtMsg,GW Specific,Remaining Fiel
0,1/7/2014 0:00:00.173,CME-B,00A0CO
CERSEIL,DQN555,JJ0,JJ0,A1,55529196,
rdId=4WAZP,ExchTransNo=,OrdNoOld=82
utospreader Engine|Autospreader SE,
IL,OrderSourceAutomated=1,ExchangeC
1,1/7/2014 0:00:00.173,CME-B,00A0CO
RSEIL,DQN555,JJ0,JJ0,A1,55529196,C,
Id=4WAZP,ExchTransNo=,OrdNoOld=8225
ospreader Engine|Autospreader SE,Or
,OrderSourceAutomated=1,ExchangeCre
2,1/7/2014 0:00:00.173,CME-B,00A0CO
CERSEIL,DQN555,JJ0,JJ0,A1,55529196,

Audit log
CSV text

Gbytes

H2O

2-D Table
not sorted

(H2O Frame)

Millions
of rows

Sort #1

Clustering Spoofing RSKs

RSK
file

Clustering Abusive RSKs
...

Sort #2 Clustering WashAct RSKs

Sort #3 Clustering Cross RSKs

...

Parallel Python

Table of clusters
Each cluster is:
 1 “intent”
 RISK score
 ptr to raw data
 ML vectors

ETL

Cleaned
Ready for ML

ETL – Data Cleaning

2-D Table
not sorted

(H2O Frame)

Millions
of rows

ETL

Cleaned
Ready for ML● Read audit log

● Decide Vendor

– TT, CQG,
CME Audit, …

● Vendor specific ETL

– Drop or impute missing values

– Exchange, product, price normalization

– Trader & account normalization

– Uniform mapping for tokens
● e.g. {B,Buy,BUY} → Buy; {Limit,LMT,L,K,2} → Limit

– 100s of individual cleanup steps

Parallel Clustering – Python & Java

● Data ETL’d & cleaned; sorted already

● Each cpu does roughly equal work

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9
NDAQ 1:45.678 Fill 76.5
NDAQ 1:45.678 Add 76.5
NDAQ 1:45.679 Fill 78.9
NDAQ 1:45.680 Reject 78.9
NDAQ 1:45.680 Cancel 78.9
NDAQ 1:45.681 Add 78.9
NDAQ 1:55.681 Fill 78.9
NDAQ 1:55.681 Add 78.9
NDAQ 1:55.682 Add 78.9
NDAQ 1:55.683 Fill 78.9
AAPL 1:55.684 Reject 78.9
AAPL 1:55.684 Cancel 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Fill 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Add 78.9
AAPL 2:01.684 Add 78.9
AAPL 2:01.684 Add 78.9

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9
NDAQ 1:45.678 Fill 76.5
NDAQ 1:45.678 Add 76.5
NDAQ 1:45.679 Fill 78.9
NDAQ 1:45.680 Reject 78.9
NDAQ 1:45.680 Cancel 78.9
NDAQ 1:45.681 Add 78.9
NDAQ 1:55.681 Fill 78.9
NDAQ 1:55.681 Add 78.9
NDAQ 1:55.682 Add 78.9
NDAQ 1:55.683 Fill 78.9
AAPL 1:55.684 Reject 78.9
AAPL 1:55.684 Cancel 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Fill 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Add 78.9
AAPL 2:01.684 Add 78.9
AAPL 2:01.684 Add 78.9

cpu0

cpu1

cpu2

cpu3

Parallel Clustering – Python & Java

● Clustering rules in Python

– Good for DS team!
● Python per row:

– {keep,drop,start new cluster}
● Execution in parallel Jython

– Fast on Big Data

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9
NDAQ 1:45.678 Fill 76.5
NDAQ 1:45.678 Add 76.5
NDAQ 1:45.679 Fill 78.9
NDAQ 1:45.680 Reject 78.9
NDAQ 1:45.680 Cancel 78.9
NDAQ 1:45.681 Add 78.9
NDAQ 1:55.681 Fill 78.9
NDAQ 1:55.681 Add 78.9
NDAQ 1:55.682 Add 78.9
NDAQ 1:55.683 Fill 78.9
AAPL 1:55.684 Reject 78.9
AAPL 1:55.684 Cancel 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Fill 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Add 78.9
AAPL 2:01.684 Add 78.9
AAPL 2:01.684 Add 78.9

cpu0

cpu1

cpu2

cpu3

Parallel Clustering – Python & Java

● CPU reads ~100k rows,
builds ~1k clusters of
~100 rows each

● Clusters are:
same instrument,
close in time, but
model-specific

● Represent intent

● Clusters vary:
– Wash Trade is 2 rows,

Abusive Messaging might be 10000

– Wash is 1msec; Spoof might be 5min

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9
NDAQ 1:45.678 Fill 76.5
NDAQ 1:45.678 Add 76.5
NDAQ 1:45.679 Fill 78.9
NDAQ 1:45.680 Reject 78.9
NDAQ 1:45.680 Cancel 78.9
NDAQ 1:45.681 Add 78.9
NDAQ 1:55.681 Fill 78.9
NDAQ 1:55.681 Add 78.9
NDAQ 1:55.682 Add 78.9
NDAQ 1:55.683 Fill 78.9
AAPL 1:55.684 Reject 78.9
AAPL 1:55.684 Cancel 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Fill 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Add 78.9
AAPL 2:01.684 Add 78.9
AAPL 2:01.684 Add 78.9

cpu0

cpu1

cpu2

cpu3

Parallel Python ML Modeling

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9

Sym Time Action Price
APPL 1:23.456 Add 78.9
APPL 1:23.457 Add 79.0
APPL 1:23.458 Add 78.7
APPL 1:23.459 Add 78.9
APPL 1:23.459 Fill 78.7
APPL 1:23.461 Reject 78.9

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9

Sym Time Action Price
APPL 1:23.456 Add 78.9
APPL 1:23.457 Add 79.0
APPL 1:23.458 Add 78.7
APPL 1:23.459 Add 78.9

cpu0

Risk: 200 Sym: APPL ML Vectors: 1.2, 2.3

cpu1

Risk: 200 Sym: NDAQ ML Vectors: 3.4, 4.5

Risk: 200 Sym: APPL ML Vectors: 1.2, 2.3

cpu2

{spoofing.py}

{spoofing.py}

● Clusters run in parallel

– Run sequentially per-cluster
● Each CPU grabs a cluster,

runs Python (Java) model,
builds ML vectors, and
scores for risk

● Work varies by model
and cluster size

– Worklist load balances

Parallel Python ML Modeling

● E.g. spoofing feature might track a position

– Watch Places & Fills on both sides over time,

– Find large positions pressuring the market,

– Then a cancel on one side,

– Then reaping fills as market rebounds

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9

cpu0

● Tracking the market is
inherently sequential

● Building a state machine

Parallel Python

● Limited to what can be parallelized:

– No global variables (function local only)

– No native library callouts – unless thread safe
● Local self functions ok

● Most generic Python ok

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9

cpu0

● Simple sequential Python

● Called with cluster as a
simple array of rows

DEMO!

● Anonymized but real data

Policing The Stock Market with ML

Q&A

Parallel Python ML Modeling

● Most models in Python

– Some in Java (H2O)
● Run sequentially per-cluster

● Clusters run in parallel

● Each CPU grabs a cluster,
runs Python (Java) model,
builds ML vectors, and
scores for risk

● Work varies by model and
cluster size – not uniform

– Worklist load balances

Sym Time Action Price
NDAQ 1:23.456 Add 78.9
NDAQ 1:23.457 Add 79.0
NDAQ 1:23.458 Add 78.7
NDAQ 1:23.459 Add 78.9
NDAQ 1:23.459 Fill 78.7
NDAQ 1:23.461 Reject 78.9
NDAQ 1:23.463 Cancel 78.9
NDAQ 1:23.463 Add 78.9
NDAQ 1:45.678 Fill 76.5
NDAQ 1:45.678 Add 76.5
NDAQ 1:45.679 Fill 78.9
NDAQ 1:45.680 Reject 78.9
NDAQ 1:45.680 Cancel 78.9
NDAQ 1:45.681 Add 78.9
NDAQ 1:55.681 Fill 78.9
NDAQ 1:55.681 Add 78.9
NDAQ 1:55.682 Add 78.9
NDAQ 1:55.683 Fill 78.9
AAPL 1:55.684 Reject 78.9
AAPL 1:55.684 Cancel 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Fill 78.9
AAPL 1:55.684 Add 78.9
AAPL 1:55.684 Add 78.9
AAPL 2:01.684 Add 78.9
AAPL 2:01.684 Add 78.9

cpu0

cpu1

cpu2

cpu3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

