'l galois|

Assuring Crypto Code with
Automated Reasoning

Aaron Tomb

Galois, Inc.
QCon, London
March 8, 2017

OpenSSL Security Advisory [07 Apr 2014]

A missing bounds check in the handling of the TLS heartbheat extension can be
used to reveal up to 64k of memory to a connected client or server.

Only 1.0.1 and 1.0.2-beta releases of OpenSSL are affected including
1.0.1f and 1.0.2—b3ta1.

Thanks for Neel Mehta of Google Security for discovering this bug and to
Adam Langley <agl@chromium.org> and Bodo Moeller <bmoeller@acm.org> for
preparing the fix.

Affected users should upgrade to OpenSSL 1.0.1lg. Users unable to immediately
upgrade can alternatively recompile OpenSSL with -DOPENSSL_NO HEARTBEATS.

US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAN Q

HOME ABOUT US CAREERS PUBLICATIONS ALERTS AND TIPS RELATED RESOURCES C*VP

Alert (TA" 4-098A) More Alerts
OpenSSL 'Heartbleed' vulnerability (CVE-2014-0160)

Original release date: Apri 08, 2014 | Lzst revised: October 05, 2015
& Print ¥ Tweet K Send Share

Systems Affected

e OpenSSL 1.0.1 through 1.0.1f
e OpenSSL 1.0 2-beta

o #cloudbleed

A vulnerabllity in OpenSSL coulc allow a remote attac<er to expose sensitive deta, possibly including user authentication credentials and secret keys, through
incorrect mamory handling in the T1L S heartheat extension

© 2017 Galois, Inc.

Generic Flaws

= Huge impact, but...

B (Generic misuse of language

if (++p == pe)
goto test eof;

B No need to understand intention of code
= Visibility helps with quick remediation

© 2017 Galois, Inc.

Practical realisation and elimination
of an ECC-related software bug attack*

B. B. Brumley', M. Barbosa?, D. Page®, and F. Vercauteren*

1 Department. of Information and Computer Science,
Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, Finland.
billy.brumley@aalto.fi
¢ HASLab/INESC TEC
Universidade do Minho, Braga, Portugal.
mbb@di.uminho.pt
* Department of Computer Science, Universily of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.
page@cs.bris.ac.uk
1 Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belginm.
fvercaut@esat.kuleuven.ac.be

Abstract. We analyse and exploit implementation features in OpenSSL
version 0.9.8¢g which permit an attack against ECTDH-based linctional-
ity. The attack, although more general, can recover the entire (static)
private key from an associated SSL server via 633 adaptive queries when
the NIST curve P-256 is used. One can view it as a software-oriented ana-
logue of the bug attack concept due to Biham et al. and, consequently,
as the first bug attack to be successfully applied against a real-world sys-
tem. In addition to the atiack and a posteriori countermeasures, we show

List: openssl-dev

Subject: [openssl.org #1593] BN nist mod 384 gives wrong answers
From: "Harry Reimann via RT" <rt () openssl ! org>

Date: 2007-10-18 12:58:48

Message-ID: rt-3.4.5-97698-1192712328-18.1593-21-0 () openssl ! org
[Download message RAW]

The function BN nist mod 384 (in crypto/bn/bn nist.c) gives wrong results
for some inputs. For example, on input:
Oxff£fL££f00000000ffEE£E£EEFEEfELLELLELFELLEL£E000000000000000000000000££LELLELELLLLLELELELEE \

fEfffffffffe00000002fEfEffffffffffEfEEfFfEffEELf00000000L£ELELEELEFLELEFEFELELEEL it \
yields 0x100000000fff£ffffFfffFFFFEFFO00000000

but the correct result is
0x200000001ffffffffff£f£££f00000001.

As a consequence the function EC_POINT add gives sometimes wrong results

© 2017 Galois, Inc.

Why Is This Bug Interesting?

m Couldn’t be detected by generic tool
B Need to know what the code should do!

m Discovered day before 0.9.8g release; fixed 6mo later

= Many users didn't upgrade quickly
® Exploit described 4 years later

© 2017 Galois, Inc.

Introduction

B R&D Lead @ Galois

B Focused on software correctness

® Developing tools to check that code does what's intended

= With high confidence about all possible inputs
= This talk: the Software Analysis Workbench (SAW)

B Open source tool with a high degree of automation

© 2017 Galois, Inc.

Can | get from SF to LA”

. Yosemite Yosemite
sanifrancisco S National Park ; ;O San Francisco, CA National Park
San Jose Sjerra Natjona[\ Sangose Sierra National
R Forest ! Forest
(5] \cqc (5]
Fresno - Fresno
Salinas o Salinas o)
Model y e Model o
Montere nterey)
_ / CALIFORNIA _ & 11h 3 min
Extraction oo Analysis 473 miles |
' Sequoia Sequoia
f “r ﬁ Na“'ona, FOfeSt ﬁ National Forest
San Luis Bakersfield Sa“_ Luis Bakersfield
Obispo U % Obnsspo Uy %
. (5] 5
Santa Maria Santa Maria
L] L]
Los Padres Los Padres
National Fores! National Forest Q
Qo
Santa garbara Santa Barbara @
Los Angeles g
og Los Angeles, CA
Anahei
Long Beacho _?_._: Long Beacho .

Moving from the territory to the map is possible for software!

Imagery ©2017 Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus, Data LDEO-Columbia, NSF, NOAA, Map data ©2017 Google, INEGI

© 2017 Galois, Inc.

Specifications and Implementations

® |mplementation: CA itself
m Specification: driving from SF to LA is (always) possible

= Map of CA is model of CA, or more detailed specitication

= Model: things that can be done
B Spec: things that should be done

® Represented in the same way! Therefore, comparable.

© 2017 Galois, Inc.

Generic vs. Application-Specific Bugs

Application
Bugs

Most static analysis tools Verification tools
(including SAW)

© 2017 Galois, Inc.

Reference and Optimized “Find First Set”

uint32_ t ffsl(uint32_t w) { uint32 t ffs2(uint32 t w) {
int cnt, 1 = 0; uint32 t r, n = 1;
if(!'w) return 0; if(!(w & @xffff))
for(cnt = 0; cnt < 32; cnt++) {n+= 16; w >>= 16; }
if((1 << i++) & w) if(!'(w & ®x®®ff))
return i: {n+=8: w >>= 8: }
return 0; if(!(w & 0x000f))
} 1N 4= 45w >>= 45)
1f(!'(w & 0x0003))
{n+= 2; w>>= 2; }
= (n+((w+1) & 0x01)):
return (w) ? r : 0;
I3

© 2017 Galois, Inc.

Testing to Compare Specs and Implementations

int ffs_test(uint32_ t w) A
return ffsl(w) == ffs2(w):

}

= Could run on caretully-chosen values
= Could run on many randomly-chosen values

B |nthe map metaphor: “I once drove from SF to LA, and it
went fine.”

© 2017 Galois, Inc.

Exhaustive Testing Would be Ideal!

= Could maybe exhaustively test Tfs, but only just
= And it's trivial code (64-bit version intractable)

® Most code Is much bigger, and wouldn't be tractable

= |n the map metaphor: “I tried to get from SF to LA using
every possible vehicle and succeeded.”

= How long would this take to do”

© 2017 Galois, Inc.

Exhaustive Testing via Automated Reasoning

nt32_t ffs2(uint32_t w) {
R ST — a T — uint32_t r, 1;
uiinZEEtffsilfué?t32—t W) A (‘ l "(.,Eon'iﬂw.. (’ ' "(x,gorl'm&’., 1f<({!r(1w+§ ?g, \f/filz por
_ y 1= 05 “In . ~1n 2 if (' (w & 0x00ff))
f(lw) etur . ‘1" fa‘oz (§|):§l\a)f =] . ‘\“ fa'oz (é):Ml = . {n+=8; w>=3; }
= < ++ ’61) N o 161) o .
for(cn ; cnt < 32; cnt++) 2 s [o 2 P [o F(1(w & 0x000F))
if((1 << i++) & w) o vize " o vite ; : {.nw+— 4)-(w>>= 4; }
r ¥ : 0 . 0 F(1 (W & 0o -
ﬁ 3 ‘ =Y a . AN -3 a . 1f(-(W & 0x0 @3))
u 7("‘) f(x,OMX—M T(é)* Iﬂ’({,e,l l., " 7('r) f(x’oylx—M T(é)* lnl(g’.e'l l-. 1" { n += 2; W >>= ; }
} 00 a0 | Jw 00 a0 | Jw
", (o X, C / & r=(n+((w+l) & 0x01));
é | return (w) ? r : 0;
e d
}

If(r)-(joglnl,(x,()))'f(‘» -1 e | jr(r)'(fg s) Ss0be={79) | *

I 0 ﬂxuhli

nl,(x,
0[BT 0 [rlale,

-~ N

Proof Counterexample

= Map metaphor: "By applying graph analysis to the map, |
know it's always possible to get from NY to LA, whatever

welght, height, or vehicle type”

13

© 2017 Galois, Inc.

The Software Analysis Workbench (SAW)

m [Extracts models from programs

B Supports common languages through JVM, LLVM
B Most used for Java and C, works with some Rust, C++, others

B [ransforms, compares, and proves things about models

® Builds on powertful automated reasoning technology

- SAT
B SMT
= Manual rewriting

© 2017 Galois, Inc.

Proving FFS Equivalence

ffs Llvm.saw

1 <— Llvm_load module "ffs.bc";
ffs_ref <— Lllvm_extract L "ffs1l"™ Llvm_pure;
ffs_1mp <— Lllvm_extract L "ffs2" Llvm_pure;
let thml = {{ ffs_ref === ffs_imp }};
result <- time (prove abc thml);

print result;

$ saw ffs_ Llvm.saw

Loading module Cryptol
Loading file "ffs_Llvm.saw"
Time: 0.024025s

Valid

© 2017 Galois, Inc.

64-bit “Find First Set”

uinte4 t ffsl(uinted t w) {
int cnt, 1 = 0;
1f(!'w) return 0;
for(cnt = 0; cnt < 64; cnt++)
1f((1 << i++) & w)
return 1i;
return 0;

¥

$ saw Tfs64 Llvm.saw

Loading module Cryptol

Loading file "ffs64 Lllvm.saw"
Time: 0.02996s

Invalid: [w = 0x8000000000000000]

16 © 2017 Galois, Inc.

64-bit “Find First Set”

uinte4 t ffsl(uinted t w) {
int cnt, 1 = 0;
1f(!'w) return 0;
for(cnt = 0; cnt < 643 cnt++)
1f((((uint6d _t)1) << i++) & w)
return 1i;
return 0;

¥

$ saw ffs64 llvm fixed.saw

Loading module Cryptol

Loading file “ffs64_Llvm_fixed.saw"
Time: 0.053556s

Valid

© 2017 Galois, Inc.

Dealing with Pointers

void let _swap_spec = do

swap_xor(uint8 t *x, uint8_ t xy) { X <— fresh_var "x" (llvm_int 8);
XX = kX N ky; <— fresh var "y" (llvm_int 8);
Xy = kX 7~ kxy; Xp <= alloc (llvm_int 8);
kX = kX 7~ ky; 0 <— alloc (llvm_int 8);

¥ points_to xp (term Xx);

points_to yp (term y);

execute_func [xp, ypl

points_to xp (term y);
points_to yp (term x);

b

Lload_Llvm_module “swap_xor.bc";
Llvm_verify "swap_xor" [] swap_spec;

© 2017 Galois, Inc.

What Makes Crypto Code Tractable?

= Short code, typically
= Small, fixed input and output sizes
m (Constrained execution time

m 5Specifications exist

Ultimately, decidable (avoids halting problem)

© 2017 Galois, Inc.

Cryptographic Specifications

FIPS PUB 180-4

FEDERAL INFORMATION FROCESSING STANDARDS
PUBLICATION

Secure Hash Standard (SHS)

CATEGDRY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

nformation Tedhnclogy Laboratory
Nationzl instiute of Standards and 1eennology
Gaithersbure, MD 20859-8900

This publicaticn is availab'e free of charge f-om:
o i f ST Fl 1007

A_qust 2015

wﬂ Ol-c%
& %
&)
- +
s

a’nrp_s of T

%
>

V.S, Dezartman: of Commerce
Lenwy Fragier, Seomtary

National Insticute of Standards and Technalogy

Wilie & Moy Unele: Secrviury for Simondneds oued Treameingy aond Diecue

Federal Information
Procesadng Stundurds Publication 197

November 26, 2001

Announcing the

ADVANCED ENCRYPTION STANDARD (AES)

Federzl [nformaticn Processing Stardards Publications (FIPS PUBS) are issuad by the National
[nsdrute of Standards anc Techmology (NIST) after approval by th2 Secreizry of Commerce
parsuant to Section 5131 of the Information Technology Manzgement Relorm Act of 1966
(Pab-li: Liew 104106 aardd the: Computer Sexerity Act of 7987 (Pubixe Law 100.235).

1. Name of Standard. Acvanced Encrypdon Stancard (AES) (FIPS PUE 197).

2. Category of Standard. Computer Security Standard, Cryplography.

3. Explonation, The Advanced Encryption Stancard (AES) fpecihes a FIPS epproved
crvawographic algorithm that can be used o protect electronic data, The AES algerithm is a
symmeric block clpaer that can encrypt (ercipher) and decrypt (dec:pher) information.
Ercrypion converts dita o an umintelligible form called ciphertext. decrypting the cipherext
cooverts the data fack oo s ocigmal fomn, cille] plainexd.

The AES algorithm is capable of asing oryptographic keys of 128 192, and 256 hils @@ enerypl
anl dexry pt ki in Blocks of 128 bits,

4, Approving Autherity, Secretary of Comme e,

s Maintenance Agency. Deperment of Commerce, Nztonzl Instiute of Standards and
Technology, Information Tecwology [ubomaory (ITL).

6. Applicebility. This standardé may be uvsed by Federzl depanments and agencies when an
agemey detenmines tha: sensitive (unclassifisd) -aformation Ges defined in PL100-235) requires
crypographic protat oo

Other FIPS-upproved eryplographic: algorithms may be used in addition to, or in lien of, this

stendanl. Faleral gences o depanments that use crypoographic devces fie protecting classifed

informatior. can usc those devices for prokecting sensitive (unclassified) information in lku of

this :andard.
In addition, this standard may be edopted ard used by non-lederal Government organizations.
Such use is encouraged when it provides e desired sccusity for commcrcial aad privale
orzamzotions.,

FIPS PUB 198-1

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

The Keyed-Hash Message Authentication Code
(HMAC)

CATEGCRY: COMPUTER SECURITY SUBCATEGORY: CRYPTCGRAPHY

Infarmation |echnnlogy | 2bomtary

Nationa Inztliute of Standards and Technclogy
CGaitrersourg, MD 20898-8900

July 2008

U.5. Department of Cammerce
Csriza I4. CutteToz, Secreiay

Noticnal Institute of Standerds ond Teenhnology
vass M. Jumer. Dapuly Uirceior

© 2017 Galois, Inc.

Cryptol and Specifications

= Declarative language tailored to cryptography Progering
® [yped functional language with sized vectors

= Bit manipulation Cryptol:
ext : {n} (fin n) => [n] —> [n+1] The Language of Cryptography
ext(x) = x # zero

- Safe additiOn ga[ois 421swam;£;«$?cl1m€£§uzéi§

add safe : {n} (fin n) => (I[n],[n]) —> [n+l1l];
add_safe(x,y) = ext x + ext y

© 2017 Galois, Inc.

Case Study: OpenSSL AES O pe n SS L

Cryptography and SSL/TLS Toolkit

m Completely automated once specification and

implementation lined up
m Script written primarily by OpenSSL developer

= High end of computational cost

® Several hours to complete proof

B |ntegrated into fork of OpenSSL repo

© 2017 Galois, Inc.

Case Study: Galois ECDSA

® |n-house implementation of Elliptic Curve Digital
Signature Algorithm (ECDSA) in Java

® Designed for speed and verifiability
® [astest Java implementation we know of

. ~4 5KLOC of implementation, ~1.5KLOC proof script
= Around 3.5min to verity on this laptop

m Discovered a subtle bug
B Very similar to the OpenSSL modular reduction one

© 2017 Galois, Inc.

The Bug (similar to OpenSSL’s)

NISTCurve.java (line 964):

d = (z[9] & LONG MASK) + of;
z[@] = (int) d; d >>= 32;

d = (z[1] & LONG MASK) - of;
z[1] = (int) d; d >>= 32;

d += (z[2] & LONG MASK):;

© 2017 Galois, Inc.

The Bug (like OpenSSL’s)

Bug only occurs when this addition overflows.

Previous code guaranteed that @ < of < 5

NISTCurve.

ABC found bug in 20 seconds.

d Testing found bug after 2 hours

[= (8 billion field reductions).
V4 {

d += (z[1] & LONG_MASK) — of;
z[l 1] = (int) d; d >>= 32;
d += (z[2] & LONG_MASK);

© 2017 Galois, Inc.

static int s2n_sslv3_mac_init(struct s2n_hmac_state *state,
s2n_hmac_algorithm alg, const void *key,
uint32_t klen)

{

s2n_hash_algorithm hash_alg = S2N_HASH_NONE;

if (alg S2N_HMAC_SSLv3_MD5) {
hash_alg = S2N_HASH_MD5;

}

if (alg S2N_HMAC_SSLv3_SHAL) {
hash_alg = S2N_HASH_SHAL;

}

for (int i = 0; i < state->block_size; i++) {
state->xor_pad[i] = 0x36;

}

GUARD(s2n_hash_init(&state->inner_just_key, hash_alg));

. GUARD(s2n_hash_update (&state->inner_just_key, key, klen));
GUARD(s2n_hash_update(&state->inner just_key, state->xor_pad,
state->block_size));
. for (int i = 0; i < state->block_size; i++) {

state->xor_pad[i] = 0x5c;

GUARD(s2n_hash_init (&state->outer, hash_alg));

GUARD(s2n_hash_update (sstate->outer, key, klen));

GUARD(s2n_hash_update (sstate->outer, state->xor_pad, state->block_size));

/* Copy inner_just_key to inner */

return s2n_hmac_reset(state);

}

static int s2n_sslv3_mac_digest(struct s2n_hmac_state *state, void *out,
uint32_t size)
{
for (int i = 0; i < state->block_size; i++) {
state->xor_pad[i] = 0x5c;

}

] GUARD(s2n_hash_digest (sstate->inner, state->digest_pad,
state->digest_size));
memcpy_check (sstate->inner, &state->outer, sizeof(state->inner));

GUARD(s2n_hash_update (&state->inner, state->digest pad,
state->digest_size));
return s2n_hash_digest(sstate->inner, out, size);
}
int s2n_hmac_init(struct s2n_hmac_state *state, s2n_hmac_algorithm alg,

const void *key, uint32_t klen)

s2n_hash_algorithm hash_alg = S2N_HASH NONE;
state->currently in_hash_block =

state->digest_size = 0;
state->block_size = 64;
state->hash_block_size = 64;

| switch (alg) {
case S2N_HMAC_NONE:

| |

break;

case S2N_HMAC_SSLv3_MD5:
state->block_size = 48;
/* Fall through ... */

case S2N_HMAC MD5:
hash_alg = S2N_HASH_MD5;
state->digest_size = MD5_DIGEST LENGTH;

break;

case S2N_HMAC_SSLv3_SHAl:
state->block_size = 40;
/* Fall through ... */

case S2N_HMAC_SHAl:
hash_alg = S2N_HASH_SHAl;

[| | | state->digest_size = SHA_DIGEST_LENGTH;

break;

case S2N_HMAC_SHA22
hash_alg = S2N_HASH_SHA224;
state->digest_size = SHA224_DIGEST_LENGTH;
break;

case S2N_HMAC_SHA256:
hash_alg = S2N_HASH_SHA256;
state->digest_size = SHA256_DIGEST LENGTH;

break;
case S2N_HMAC_SHA3
hash_alg = S2N_HASH_SHA384;
state->digest_size = SHA384_DIGEST LENGTH;
state->block_size = 128;
state->hash_block_size = 128;
breal
case S2N_HMAC_SHAS12:
hash_alg = S2N_HASH_SHA512;
state->digest_size = SHA512_DIGEST LENGTH;
state->block_size = 128;
state->hash_block_size = 128;
breal
default:
S2N_ERROR (S2N_ERR_HMAC_INVALID_ALGORITHM);

}

gte_check(sizeof (state->xor_pad), state->block_size);
gte_check(sizeof (state->digest_pad), state->digest_size);

state->alg = alg;

. if (alg S2N_HMAC_SSLv3_SHAl || alg == S2N_HMAC_SSLv3_MD5) {
p— return s2n_sslv3_mac_init(state, alg, key, klen);
}
—
GUARD(s2n_hash_init (sstate->inner_just_key, hash_alg));
GUARD(s2n_hash_init (sstate->outer, hash_alg));

uint32_t copied = klen;
if (klen > state->block_size) {
GUARD(s2n_hash_update (&state->outer, key, klen));
GUARD(s2n_hash_digest (&state->outer, state->digest_pad,
state->digest_size));

memepy_check (- pad, digest_pad, digest_size);
copied = state->digest_size;
} else {

memcpy_check (state->xor_pad, key, klen);

for (int i = 0; i < copied; i++)
state->xor_pad[i] “= 0x36;

for (int i = copied; i < state->block_size; i++) {
state->xor_pad[i] = 0x36;

HMAC (K, text) = H((Ko ~ opad) # H((K@ ~ ipad) # text)) —

for (int i = 0; i < state->block_size; i++) {
state->xor_pad[i] "= 0x6a;

}

return s2n_hmac_reset(state);
}
int s2n_hmac_update(struct s2n_hmac_state *state, const void *in, uint32_t size)
{

/* Keep track of how much of the current hash block is full

Why the 4294949760 constant in this code? 4294949760 is the

print x

What it does do however is ensure that the mod operation takes a
constant number of instruction cycles, regardless of the size of
the input. On some platforms, including Intel, the operation can

u u highest 32-bit value that is congruent to 0 modulo all of our
HMAC block sizes, that is also at least 16k smaller than 2°32. It
— therefore has no effect on the mathematical result, and no valid
* record size can cause it to overflow.
I .
The value was found with the following python code;
X = (2 %% 32) - (2 ** 14)
n while True:
—
I
* take a smaller number of cycles if the input is "small”.
*/
state->currently in_hash block += (4294949760 + size) % state->hash block size;
I state->currently in_hash_block %= state->block size;
I return s2n_hash_update(&state->inner, in, size);
}

840 | x 8 48 | x % 64 | x 8 128
int s2n_hmac_digest(struct s2n_hmac_state *state, void *out, uint32_t size)

{
if (state->alg S2N_HMAC_SSLv3_SHAl || state->alg == S2N_HMAC_SSLv3_MD5) {
return s2n_sslv3_mac_digest(state, out, size);
}
GUARD(s2n_hash_digest (sstate->inner, state->digest_pad,
state->digest_size));
GUARD(s2n_hash_reset (sstate->outer));
GUARD(s2n_hash_update . -_pad, block_size));
GUARD(s2n_hash_update (sstate->outer, state->digest_pad,
state->digest_size));
return s2n_hash_digest(sstate->outer, out, size);
}
int s2n_hmac_reset(struct s2n_hmac_state *state)
{
state->currently in_hash_block = 0;
memcpy_check (sstate->inner, &state->inner just_key, sizeof(state->inner));
return 0;
}

© 2017 Galois, Inc.

HMAC Structure

m Specification is a single function

Processes whole message at once

Implementation Is incremental

Processes message in chunks, as available

key

l

l

digest

hmac |«<— MSE

key

i

hmac_init

state
Y

hmac_update

lstate

hmac_update

<—— MSg]

- [NSg2

lstate

hmac_digest

'

digest

© 2017 Galois, Inc.

Verification Approach for s2n HMAC

B [ransitive verification

Abstract| proof |[Incremental| proof |Production
Cryptol |[<————- — Crypto| | —C— s2N
code code code

® Each stage automatically proved

® |ntegrated into Travis Cl system
m Code changes re-verified on every commit

© 2017 Galois, Inc.

5320

s2n is a C99 implementation of the TLS/SSL protocols that is designed to be simple, small, fast, and with secunty as a
priority. It is released and licensed under the Apache Software License 2.0.

Using s2n

The s2n /O APIs are designed 1o be intuitive to developers familiar with the widely-used POSIX /O APIs, and s2n supports
blocking, non-blocking, and full-duplex /O, Additionally there are no locks or mutexes within s2n,

. ,) L1 : - | Nd |
struct s2n_connection *conn = s2n_connection_new(S2N_SERVER);
AT (conn == NULL) {

. error

l 1te a i SCL10N wilith a 112 0o
1f (s2n_connection_set_fd(conn, fd) < 8) {
. error

© 2017 Galois, Inc.

The Future of SAW’s Approach

= Not just cryptographic code. Some early success:

B Serialization and deserialization
m DSP

® Fewer constraints. Have design concepts for:
= Unbounded loops
= Non-fixed heaps
® Easier compositional reasoning

© 2017 Galois, Inc.

Wrapping Up

m Software is a mathematical artifact

m Conclusive proofs about its behavior are possible
m SAW partly automates this in an open source tool
= Particularly eftective for cryptographic code

® Broader applications likely in the future

© 2017 Galois, Inc.

Acknowledgements

Aaron Tomb, Adam Foltzer, Adam Wick, Andrey Chudnov, Andy Gill, Benjamin
Barenblat, Ben Jones, Brian Huffman, Brian Ledger, David Lazar, Dylan
McNamee, Edward Yang, Eric Mertens, Fergus Henderson, lavor Diatchki, Jeft

Lewis, Jim leisher, Joe Hendrix, Joe Hurd, Joe Kiniry, Joe

Stanley, Joey Dodds,

John Launchbury, John Matthews, Jonathan Daugherty, Kenneth Foner, Kyle
Carter, Ledah Casburn, Lee Pike, Levent Erkdk, Magnus Carlsson, Mark Shields,
ns, Philip Weaver, Robert Dockir

Mark Tullsen, Matt Sottile, Nathan Colli

Browning, Sam Anklesaria, Sigbjarn Fi

Tristan Ravitch.

1

ne, Thomas Nordin, Trevor Ellio

s, Sally

1, and

© 2017 Galois, Inc.

Resources

= Contact me
® Aaron Tomb <atomb@galois.com>
m SAW is freely available and open source
® hitp://saw.galois.com
m https://github.com/Galoisinc/saw-script
® Cryptol is freely available and open source
m hitp://cryptol.net
m https://github.com/GaloisInc/cryptol
= HMAC Verification
® https://galois.com/blog/2016/09/veritying-s2n-hmac-with-saw/

© 2017 Galois, Inc.

mailto:atomb@galois.com
http://saw.galois.com
https://github.com/GaloisInc/saw-script
http://cryptol.net
https://github.com/GaloisInc/cryptol
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/

