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A lucky mistake



Expected consequences



Sarcastic empathy



Some valuable feedback



The unintended consequence

Artist engagement 
for exposed users went up



The unintended consequence

Promising insights about 
content promotion use-case



The unintended consequence

Confirmation that the 
ad server is a powerful 

messaging platform



Why should you care?
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What I do
● Founded ads engineering team at Spotify in 2011

● Build all things ads engineering - team & software

● Major focus areas : 

○ Ad delivery (Backend and Web)

○ Multi-platform native ads (Client Platform)

○ Ad performance (ML and Data)



3 noteworthy things



Full stack refactor

Evolution at scale

  Pragmatic choices



100,000,000+ 
MAU



50,000,000+
Subscribers



30,000,000+ 
Songs



2,000,000,000+ 
Playlists



$5,000,000,000+ 
Revenue paid to rightsholders



60 Markets



Platform Ubiquity



Freemium business model



Ad
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Beauty of Ad Server

Relevancy Pacing Unique View Sequence Optimization



Complexity of Ad tech ecosystem



In essence it is pretty simple
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Spotify Ads infrastructure in 2011
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Spotify Ads infrastructure in 2017
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Multi-platform clients
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Data collection
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Intelligence
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Ad Delivery
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Demand fulfillment
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Now you know too

Ad server is a powerful 
messaging platform
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Architecture overhaul is hard

● While keeping the business running

● While innovating on new products

● When you should have done it yesterday



Why did Spotify evolve Ads 
architecture?



Future needs
●

● Growth in scale

● Emergence of new client platforms

● Cheap cloud computing

● New products to meet business objectives

● Technical debt



The 3 stories



Fixing the legacy mess

Story 1



Original ad server design
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Problems



Stateful service with faulty 
persistence



Cache as a data store



Service cluster as a hashed ring



Ad decisioning in Client



Batch Client-Server Calls



Fix strategy



Fix strategy tactic



Isolate refactor to one system at 
a time



The ad server transition
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After the ad server transition
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Lean, mean and fast

Story 2



Division of responsibilities
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Problems



Thick Clients



Logic duplication



Tightly coupled monolith



Fix strategy



Reduce State Management



Break monolith into services



Isolate platform independent 
logic into a lib



Fix tactic



Design your systems to be 
master of one thing



Remember division of responsibilities?
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Multiplatform Client design
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Knowledge is power,
 Unreliable data is your enemy

Story 3



Event 
Stream Historical

ETL1 ETL2 ETL3

UserEntity1(attribute1, attribute2) UserEntity1(attribute1, attribute3) UserEntity1(attribute1, attribute3’)





Problems



Duplicate, undiscoverable and 
fragmented datasets



Metric inaccuracy



Overloaded Data Infra



Fix strategy



Focus on reliable and timely log 
delivery





Data engineering with SLA



Dataset canonicalization



Some useful lessons learnt from 
architectural overhaul



Test with minimal impact radius



Mistakes are inevitable



Speed up build decisions



Think for tomorrow, Solve for today



Thank You!
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