
Ad Serving at Spotify Scale
A journey of incremental full stack overhaul

Kinshuk Mishra, Director of Engineering
kinshuk@spotify.com
@_kinshukmishra

mailto:kinshuk@spotify.com
mailto:kinshuk@spotify.com

A lucky mistake

Expected consequences

Sarcastic empathy

Some valuable feedback

The unintended consequence

Artist engagement
for exposed users went up

The unintended consequence

Promising insights about
content promotion use-case

The unintended consequence

Confirmation that the
ad server is a powerful

messaging platform

Why should you care?

Introduction

Ad
technology

stack

Architecture
Evolution

Introduction

Ad
technology

stack

Architecture
Evolution

What I do
● Founded ads engineering team at Spotify in 2011

● Build all things ads engineering - team & software

● Major focus areas :

○ Ad delivery (Backend and Web)

○ Multi-platform native ads (Client Platform)

○ Ad performance (ML and Data)

3 noteworthy things

Full stack refactor

Evolution at scale

 Pragmatic choices

100,000,000+
MAU

50,000,000+
Subscribers

30,000,000+
Songs

2,000,000,000+
Playlists

$5,000,000,000+
Revenue paid to rightsholders

60 Markets

Platform Ubiquity

Freemium business model

Ad

Introduction

Ad
technology

stack

Architecture
Evolution

Beauty of Ad Server

Relevancy Pacing Unique View Sequence Optimization

Complexity of Ad tech ecosystem

In essence it is pretty simple

Client

User Profile database

Ad Server

Campaign Management
Portal

Billing/
Reporting

Ad campaign
database

Data
Collection
System

Spotify Ads infrastructure in 2011

Edge
ServiceDesktop

Log
Delivery HDFS

User
Profile

Batch

Basic Ad Server

Campaign
Management

Billing/
Reporting

Spotify Ads infrastructure in 2017

iOS

Edge
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Optimization

Modeling
Self-Serve Portal

Creative
Generation Payments

Billing/
Reporting

Multi-platform clients

iOS

Edge
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Optimization

Modeling
Self-Serve Portal

Creative
Generation Payments

Billing/
Reporting

Data collection

iOS

Edge
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Optimization

Modeling
Self-Serve Portal

Creative
Generation Payments

Billing/
Reporting

Intelligence

iOS

Edge
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Optimization

Modeling
Self-Serve Portal

Creative
Generation Payments

Billing/
Reporting

Ad Delivery

iOS

Edge
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Optimization

Modeling
Self-Serve Portal

Creative
Generation Payments

Billing/
Reporting

Demand fulfillment

iOS

Edge
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Optimization

Modeling
Self-Serve Portal

Creative
Generation Payments

Billing/
Reporting

Now you know too

Ad server is a powerful
messaging platform

Introduction

Ad
technology

stack

Architecture
Evolution

Architecture overhaul is hard

● While keeping the business running

● While innovating on new products

● When you should have done it yesterday

Why did Spotify evolve Ads
architecture?

Future needs
●

● Growth in scale

● Emergence of new client platforms

● Cheap cloud computing

● New products to meet business objectives

● Technical debt

The 3 stories

Fixing the legacy mess

Story 1

Original ad server design
Edge Service

Router
hash(userid)

Ad server ring with
partitions

Ad server instance

Memcache

Memcache

Memcache

Memcache

Campaign DB

User DB
Desktop

Rendering Ad trigger
decisioning

Ads
Ranking

Ads
Caching

Ad batching & fetch communication

Problems

Stateful service with faulty
persistence

Cache as a data store

Service cluster as a hashed ring

Ad decisioning in Client

Batch Client-Server Calls

Fix strategy

Fix strategy tactic

Isolate refactor to one system at
a time

The ad server transition

Edge
Service

Log
Delivery HDFS

User
Profile

Batch

Smart Ad
Server

Campaign
Management

Billing/
Reporting

Ad Server
Proxy

(routing) Basic Ad
Server

Gradual transition from basic to smart ad
serving

Desktop

Rendering Ad trigger
decisioning

Ads
Ranking

Ads
Caching

Ad batching & fetch
communication

After the ad server transition

Proxy
Service

Log
Delivery HDFS

User
Profile

Batch

Campaign
Management

Billing/
Reporting

Smart Ad Server

Desktop

Rendering Ad trigger
decisioning

Ads
Ranking

Ads
Caching

Ad batching & fetch
communication

Lean, mean and fast

Story 2

Division of responsibilities

Desktop iOS

Android

Ads SDK

Desktop

Web

Rendering Ad trigger
decisioning

Ads
Ranking

Ads
Caching

Ad batching & fetch communication

Ad
decisioning

Ad fetch
orchestration

Client context

Ad Trigger & Render

Before After

Problems

Thick Clients

Logic duplication

Tightly coupled monolith

Fix strategy

Reduce State Management

Break monolith into services

Isolate platform independent
logic into a lib

Fix tactic

Design your systems to be
master of one thing

Remember division of responsibilities?

Desktop iOS

Android

Ads SDK

Desktop

Web

Rendering Ad trigger
decisioning

Ads
Ranking

Ads
Caching

Ad batching & fetch communication

Ad
decisioning

Ad fetch
orchestration

Client context

Ad Trigger & Render

BAD GOOD

Multiplatform Client design

iOS

Proxy
Service

Android

Ads SDK

Desktop

Web

Chromecast/
Playstation/

FireTV

Ad
Aggregation

Service

Log
Delivery GCS

User
Profile

Targeting
Service

DMP

Stream Batch

Ad Server

Decision Delivery Ad
Exchanges

Campaign
Management

Modeling
Self-Serve Service

Creative
Generation Payments

Billing/
Reporting

Knowledge is power,
 Unreliable data is your enemy

Story 3

Event
Stream Historical

ETL1 ETL2 ETL3

UserEntity1(attribute1, attribute2) UserEntity1(attribute1, attribute3) UserEntity1(attribute1, attribute3’)

Problems

Duplicate, undiscoverable and
fragmented datasets

Metric inaccuracy

Overloaded Data Infra

Fix strategy

Focus on reliable and timely log
delivery

Data engineering with SLA

Dataset canonicalization

Some useful lessons learnt from
architectural overhaul

Test with minimal impact radius

Mistakes are inevitable

Speed up build decisions

Think for tomorrow, Solve for today

Thank You!

kinshuk@spotify.com
@_kinshukmishra

mailto:kinshuk@spotify.com
mailto:kinshuk@spotify.com

