
Building & trusting a cloud bank
@gmorpheme #qconlondon



18th June 2012



19th June 2012



10th July 2012





we can rebuild the bank in an hour



job done
we can rebuild the bank in an hour



* terms and conditions apply

we can rebuild the bank in an hour
job done(*)



we could rebuild in an hour but…

• …the problem might not be us
• …there might be some phone calls
• …only in AWS
• …from recent backups
• …only if we make the decision to do it



Starling Bank today

Full UK Current Account

iOS & Android Apps

Debit Card

Faster Payments & DDs

Overdrafts

In-app Support

Open API

Closed Beta (100s Accs)

Core Ledger

Credit, AML, KYC, Fraud 
Processes



2016
1 15

N
ov

 2
01

5 
–

St
an

di
ng

 S
ta

rt

Ju
l 2

01
6 

–
1st

Pr
od

uc
ti

on
 A

cc
ou

nt

A
ug

 2
01

6 
–

Li
ve

 D
eb

it
 C

ar
ds

D
ec

 2
01

6 
–

Li
ve

 B
A

C
S

/D
D

s

Ja
n 

20
17

 –
Li

ve
 F

as
te

r P
ay

m
en

ts



security > resilience > scale 



velocity > economy 



architect for change



embrace cloud



three key categories of failure

• errors that correlate by infrastructure
• errors that correlate by function
• errors that emerge in complex systems under load

• we’ll talk about the first two



immutable infrastructure



instance termination is safe

• single stateless service per instance
• if ever a server is in doubtful state, kill it
• pen testing?
• chaos experiments?
• suspicious activity?

• chat-ops slack bot
• starbot kill

• rolling deployments by termination (not quick but safe)
• starbot recycle
• starbot reboot



…everywhere

• everything in our core infrastructure is either 
• immutable service in EC2
• data in a managed service

• no large infrastructure pet
• no “clusters”
• no state in EC2
• no EBS volumes to manage
• no shared caches
• no external queues
• no orchestration engines
• (yet!)



a Starling service

• simple AWS approach
• ELB / ASG / RDS across 3 AZs in eu-west-1
• “service discovery” is just DNS
• service is docker as systemd unit on CoreOS
• all specified in CloudFormation (!)
• with config and versions in S3



impact of instance outage

• 2x (5s interval + 2s timeout) = max 14s to drop out of ELB
• some 504s then 5m of reduced capacity

• 14s when 1 of our ~10 services is partially degraded



at least one bank has an iOS app that takes ~14s to start



production chaos

• we know we’re resilient because we kill servers all the time



importance of noise-free steady state

chaos
rolling release

errors
errors

(no customer impact)



artificial load in production

• monitoring and control are difficult without volume
• we deploy a “simulator” service in production 
• generates synthetic transactions
• e.g. 160,000 card authorisations a day
• continual assurance on available headroom
• interruptions are obvious
• all servers are naturally warmed up
• synthetic transactions are difficult



impact of AZ / region outage

• AZ loss => ASGs and ELBs rebalance
• region loss (EC2/RDS) => rebuild

• S3 outage
• lose some message archiving
• new instances fail retrieving config (easy fix)



self-contained systems

http://scs-architecture.org



Starling as self-contained systems

• all services have their own RDS instance
• inter-service comms is generally async
• mobile layer integrates data from different services
• no start-up order dependencies



not pure SCS

• we’re mobile-first (and API-first!) – web is secondary
• services not owned by single team
• our services have REST APIs but no internal web UI
• internal (inter-service)
• external (mobile)
• management (web console)
• operations (health check etc.)

• one key area with sync interaction (balance allocation)



each service exposes distinct APIs



testing service loss

• starbot chat-ops exposes
• starbot kill
• starbot kill all

• available to all developers



L.O.A.S.C.T.T.D.I.T.T.E.O.
(lots of autonomous services continually trying to do idempotent things to each other)



DITTO architecture
(do idempotent things to others)



DITTO architecture
• async + idempotence + retry
• async: 202 Accepted (once written to store)
• idempotence: create with PUT
• retry: accept and store (or 400) then work from database

• each service constantly working towards correctness
• often achieve idempotence by immutability
• subsequent requests match previous or fail
• reflects append-only approach to data

• no distributed transactions



POST

201 Created {uuid}

PUT {uuid}

202 Accepted
PUT {uuid}

202 Accepted

paymentcustomer bank

Make a payment



POST

201 Created {uuid}

PUT {uuid}

PUT {uuid}

202 Accepted

PUT {uuid}

202 Accepted

PUT {uuid}

retry

retry

R
etry provides “at least once” Id

em
po

te
nc

e
= 

“a
t 

m
os

t 
on

ce
”



234,000



catch-up processors without back-off



cherish your bad data



impact of service outage

• UI degrades gracefully 
• back-end work delayed
• payments
• card creation
• ledger postings
• interest accrual

• but real disruption: card auth & ATM usage 



continuous delivery



you can do anything you can undo



continuous delivery of back-end

• continual deployment to non-prod, sign-off into prod
• auto build, dockerise, test, scan, deploy < 30m
• in first 221 days of production environment

• 134 releases of software (~ 1 per weekday)
• 70 releases of infrastructure (~1 per 2 weekdays)



summary

• SCS + immutable infra + CD
• infrastructure failure absorbed
• failure of function isolated and tolerated
• UI degrades gracefully
• items “buffered” and retried
• fixed safely and swiftly

• this year
• ++services, scale!, k8s, ML/data



starlingbank.com/signup



Careers: starlingbank.com/careers
Hackathon: starlingbank.com/hackathon

Sushi image credit: www.vecteezy.com/vector-art/92795-
sushi-platter-vectors


